top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Reactive Oxygen Species : Prospects in Plant Metabolism / / edited by Mohammad Faizan, Shamsul Hayat, S. Maqbool Ahmed
Reactive Oxygen Species : Prospects in Plant Metabolism / / edited by Mohammad Faizan, Shamsul Hayat, S. Maqbool Ahmed
Edizione [1st ed. 2023.]
Pubbl/distr/stampa Singapore : , : Springer Nature Singapore : , : Imprint : Springer, , 2023
Descrizione fisica 1 online resource (299 pages)
Disciplina 546.72159
Soggetto topico Stress (Physiology)
Plants
Plant physiology
Botanical chemistry
Metabolism, Secondary
Plant Stress Responses
Plant Physiology
Plant Biochemistry
Plant Secondary Metabolism
Soggetto non controllato Botany
Biochemistry
Science
ISBN 981-19-9794-2
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Chapter 1:An Update on Reactive Oxygen Species Synthesis and its Potential Application -- Chapter 2 :Mechanism of Reactive Oxygen Species Regulation in Plants -- Chapter 3: Biomolecules Targeted by Reactive Oxygen Species -- Chapter 4: Functions of Reactive Oxygen Species in Improving Agriculture and Future Crop Safety -- Chapter 5: The Ecology of Reactive Oxygen Species Signaling -- Chapter 6: Physiological Impact of Reactive Oxygen Species on Leaf -- Chapter 7: Reactive Oxygen Species: Role in Senescence and Signal Transduction -- Chapter 8: Hazardous Phytotoxic Nature of Reactive Oxygen Species in Agriculture -- Chapter 9: Hormonal Response in Plants Influenced by Reactive Oxygen Species -- Chapter 10: The Dual Role of Reactive Oxygen Species as Signals that Influence Plant Stress Tolerance and Programmed Cell Death -- Chapter 11: ight into the Interaction of Strigolactones, Abscisic Acid, and Reactive Oxygen Species Signals -- Chapter 12: 12. Hydrogen Peroxide: Regulator of Plant Development and Abiotic Stress Response -- Chapter 13:Towards Sustainable Agriculture: Strategies Involving Phyto-Protectants against Reactive Oxygen Species -- chapter 14:Signaling Pathway of Reactive Oxygen Species in Crop Plants under Abiotic Stress -- Chapter 15: Adverse Impact of ROS on Nutrient Accumulation and Distribution in Plants.
Record Nr. UNINA-9910726291403321
Singapore : , : Springer Nature Singapore : , : Imprint : Springer, , 2023
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Sustainable Agriculture Reviews 41 : Nanotechnology for Plant Growth and Development / / edited by Shamsul Hayat, John Pichtel, Mohammad Faizan, Qazi Fariduddin
Sustainable Agriculture Reviews 41 : Nanotechnology for Plant Growth and Development / / edited by Shamsul Hayat, John Pichtel, Mohammad Faizan, Qazi Fariduddin
Edizione [1st ed. 2020.]
Pubbl/distr/stampa Cham : , : Springer International Publishing : , : Imprint : Springer, , 2020
Descrizione fisica 1 online resource (XIV, 216 p. 29 illus.)
Disciplina 338.1
Collana Sustainable Agriculture Reviews
Soggetto topico Agriculture
Nanotechnology
Nanochemistry
Nanoscale science
Nanoscience
Nanostructures
Plant physiology
Environmental health
Nanoscale Science and Technology
Plant Physiology
Environmental Health
ISBN 3-030-33996-3
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto 1. Nanomaterials: Scope, applications, and challenges in agriculture -- 2. Nutrient phyto-availability upon nanoparticle application -- 3. Effects of plant-based eco-friendly nanoparticles on growth, chemical composition and bioactivity of plants -- 4. Effect of zinc oxide nanoparticles on crop plants: A perspective analysis -- 5. Response of titanium nanoparticles to plant growth: Agricultural perspective -- 6. Impact of silver oxide nanoparticles on plant physiology: A critical review -- 7. Silicon nanoparticles and plants: Current knowledge and future perspectives -- 8. Copper nanoparticles: A new generation of fungicidal agent and plant growth promoter -- 9. Interaction of copper nanoparticles with plants: Uptake, accumulation and toxicity -- 10. Nanotechnological advances with PGPR applications -- 11. Impending and inadvertent abundance of engineered nanomaterials in soil: Vicissitudes to the soil microbiome and plant health -- 12. Boon or bane: Nanomaterials in plant growth and development.
Record Nr. UNINA-9910767522003321
Cham : , : Springer International Publishing : , : Imprint : Springer, , 2020
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Sustainable agriculture reviews 53 : nanoparticles: a new tool to enhance stress tolerance / / edited by Mohammad Faizan, Shamsul Hayat, Fangyuan Yu
Sustainable agriculture reviews 53 : nanoparticles: a new tool to enhance stress tolerance / / edited by Mohammad Faizan, Shamsul Hayat, Fangyuan Yu
Pubbl/distr/stampa Cham, Switzerland : , : Springer, , [2021]
Descrizione fisica 1 online resource (426 pages)
Disciplina 338.16
Collana Sustainable Agriculture Reviews
Soggetto topico Nanobiotechnology
Agricultura sostenible
Soggetto genere / forma Llibres electrònics
ISBN 3-030-86876-1
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Intro -- Preface -- Contents -- About the Editors -- Contributors -- Chapter 1: Role of Quantum Dots, Polymeric NPs and Dendrimers in Emphasizing Crops Tolerate Biotic and Abiotic Stresses -- 1.1 Introduction -- 1.1.1 Background -- 1.1.2 Definition -- 1.2 Properties of Quantum Dots (QDs) -- 1.2.1 Optical Characteristics of Quantum Dots (QDs) -- 1.2.2 Effect of Core-Shell Materials on Quantum Dots (QDs) Bioactivity -- 1.2.3 Electrical Characteristics of Quantum Dots (QDs) -- 1.3 Synthesis and Characterization -- 1.3.1 Synthesis of Carbon Quantum Dots (CQDs) -- 1.3.2 Characterization -- 1.3.3 Cadmium Selenide Quantum Dots Synthesis and Characterization (CdSe QDs) -- 1.4 Application for Plant Stress Tolerance -- 1.4.1 A Biotic Stress -- 1.4.2 Biotic Stress -- 1.5 Toxicity -- 1.6 Conclusion and Prospects -- References -- Chapter 2: Climate Change Mitigation and Nanotechnology: An Overview -- 2.1 Introduction -- 2.1.1 What Is the Definition of Nano-Technology? -- 2.2 Application of Nanotechnology in Major Abiotic Stresses -- 2.2.1 Nanoparticles Impact on Abiotic Stresses in the Plants -- 2.3 Potential Role of Nanotechnology to Confer Biotic Stress Tolerance in the Plants -- 2.3.1 Uptake, Synthesis and Characterization of Nanoparticles -- 2.4 Role of Nanotechnology in Mitigating Biotic Stress -- 2.4.1 Concept of Green Nanotechnology in Biotic stress Management -- 2.4.2 Mechanism of Action of Nanoparticles under Biotic Stress -- 2.5 Toxicity of Nanoparticles -- 2.6 Conclusion -- References -- Chapter 3: Nanoparticles As a New Promising Tool to Increase Plant Immunity Against Abiotic Stress -- 3.1 Introduction -- 3.2 Synthesis, Types and Properties of Nanoparticles -- 3.3 Nanoparticle Uptake, Mobilization, and Accumulation in Plants -- 3.4 Nanoparticles' Effects on Plants -- 3.4.1 Effect of Nanoparticles on Growth and Bio-Productivity.
3.4.2 Effect of Nanoparticles on Photosynthesis and Plant Water Relations -- 3.4.3 Effect of Nanoparticles on Plant Antioxidant Machinery -- 3.4.4 Effect of Nanoparticles on Phytohormones -- 3.5 Nanoparticles Increase Plant Immunity to Abiotic Stress -- 3.5.1 The Effect of Nanoparticles on Salt-Stressed Plants -- 3.5.2 The Effect of Nanoparticles on Drought-Stressed Plants -- 3.5.3 The Effect of Nanoparticles on Heat-Stressed Plants -- 3.5.4 The Effect of Nanoparticles on Plants Exposed to Heavy Metal Stress -- 3.6 Nanoparticles as Genome Editors -- 3.7 Are Nanoparticles Safe? -- 3.7.1 Nanoparticle's Toxicity -- 3.7.2 What Makes Some Nanoparticles More Toxic Than Others? -- 3.7.3 Nanoparticles' Toxicity in Plants -- 3.7.3.1 Nanoparticles Can Be Stress Elicitors As Well As Stress Mitigators -- 3.7.3.2 Nanoparticles and Genotoxicity in Plants -- 3.7.4 Risks of Nanoparticles on Humans, Soil, and Environment -- 3.8 Conclusions and Future Perspectives -- References -- Chapter 4: Exploring Nanotechnology to Reduce Stress: Mechanism of Nanomaterial-Mediated Alleviation -- 4.1 Introduction -- 4.1.1 Cascade of Signaling Behind Plant-NPs Interaction and Stress Tolerance -- 4.2 Nanoparticles and Abiotic Stress Resistance -- 4.2.1 Salinity Stress -- 4.2.2 Drought Stress -- 4.2.3 Temperature Stress -- 4.2.3.1 Heat Stress -- 4.2.3.2 Cold Stress -- 4.2.4 Heavy Metals Stress -- 4.3 Conclusion and Future Perspectives -- References -- Chapter 5: Alleviation Mechanism of Drought Stress in Plants Using Metal Nanoparticles - A Perspective Analysis -- 5.1 Introduction -- 5.2 Drought as Limiting Factor for Crop Production -- 5.3 Nanotechnology as Drought Resistant Technique -- 5.3.1 Mechanism Involved -- 5.3.2 Role of Nanoparticles -- 5.4 Plant Adaptations to Drought Stress -- 5.4.1 Role of Phenotypic Flexibility to Cope Drought and Related Role of Nanoparticles.
5.4.2 Physiological Mechanisms -- 5.4.3 Role of Cell Membrane Stability -- 5.4.4 Molecular Mechanisms -- 5.5 Metal nanoparticles and Drought Resistance -- 5.5.1 Titanium Dioxide (TiO2) Nanoparticles -- 5.5.2 Iron Oxide (FeO) Nanoparticles -- 5.5.3 Zinc Oxide (ZnO) Nanoparticles -- 5.5.4 Silicon Oxide (SiO2) Nanoparticles -- 5.5.5 Selenium Oxide (SeO3) Nanoparticles -- 5.5.6 Aluminium Oxide (Al2O3) Nanoparticles -- 5.5.7 Copper Oxide (CuO) Nanoparticles -- 5.6 Methods of applications of nanoparticles for Drought Resistance -- 5.6.1 Nanoparticles Pretreatment of Seeds or Seed Priming -- 5.6.2 Nanoparticles as Foliar Spray -- 5.6.3 Soil application of Nanoparticles -- 5.7 Conclusion -- References -- Chapter 6: Role of Various Nanoparticles in Countering Heavy Metal, Salt, and Drought Stress in Plants -- 6.1 Introduction -- 6.2 Heavy Metal/Metalloid Stress -- 6.3 Salt Stress -- 6.4 Drought Stress -- 6.5 Conclusion -- References -- Chapter 7: Mode of Action and Signaling of Nanoparticles to Alleviate Abiotic Stress in Crop Plants -- 7.1 Introduction -- 7.2 Plant Response During Abiotic Stress -- 7.3 Abiotic Stresses and Mode of Nanoparticles Action -- 7.3.1 Salt Stress -- 7.3.2 Drought Stress -- 7.3.3 Heat Stress -- 7.3.4 Chilling Stress -- 7.3.5 Heavy metal Stress -- 7.4 Nanoparticles Signalling During Abiotic Stress -- 7.5 Conclusion -- References -- Chapter 8: Impact of Nanoparticles and Nanoparticle-Coated Biomolecules to Ameliorate Salinity Stress in Plants with Special Reference to Physiological, Biochemical and Molecular Mechanism of Action -- 8.1 Introduction -- 8.2 Importance of Nanoparticles and Nanoparticle-Coated Biomolecules in Plants -- 8.3 Nanoparticles: Types and Synthesis -- 8.4 Microorganisms for Nanoparticles Synthesis -- 8.5 Steps Involved in the Microorganisms-Mediated Synthesis of Nanoparticles.
8.6 Biosynthesis of Nanoparticles Using Plants -- 8.7 Application of Nanoparticles in Salt Stress Management -- 8.8 Role of Nano-Encapsulation in Mitigating Salinity Stress -- 8.9 Mechanism of Action of Nanoparticles to Ameliorate Salt Stress -- 8.10 Conclusion and Future Perspectives -- References -- Chapter 9: Effect of Carbon Nanotubes on Abiotic Stress Response in Plants: An Overview -- 9.1 Introduction -- 9.2 Physiological Impacts of Carbon Nanotubes on Plants -- 9.2.1 Effects of CNT on Seed Germination -- 9.2.2 Photosynthetic Rate Effects -- 9.3 Impact of Carbon Nanotubes on ROS and Antioxidant System of the Plants -- 9.3.1 Carbon Nanotubes and Drought Stress -- 9.3.2 Carbon Nanotubes and Salinity Stress -- 9.3.3 Carbon Nanotubes and Other Abiotic Stresses -- 9.4 Conclusion and Future Perspectives -- References -- Chapter 10: Responses of Crop Plants Under Nanoparticles Supply in Alleviating Biotic and Abiotic Stresses -- 10.1 Introduction -- 10.2 Modulation of Gene Expression by Nanoparticle Supply -- 10.3 Effect of Nanoparticles Under Biotic Stress Conditions -- 10.4 Alleviative Effect of Different Nanoparticles Under Abiotic Stress Conditions -- 10.5 Conclusion -- References -- Chapter 11: Nanotechnological Approaches for Efficient Delivery of Plant Ingredients -- 11.1 Introduction -- 11.1.1 Importance of Nanotechnology in Agriculture -- 11.1.2 Uptake and Translocation System -- 11.1.2.1 Plants' Nanoparticle Uptake Mechanisms -- 11.1.3 Barriers of Plant Delivery System -- 11.2 Nano-Based for Ingredients Delivery -- 11.2.1 Nutrients -- 11.2.2 Micronutrients -- 11.2.3 Immune promoters -- 11.2.4 Hormones -- 11.3 Silica-Based Nanosystem for Gene Delivery -- 11.3.1 Surface Modification of Mesoporous Silica Nano particulates for Gene Delivery -- 11.3.1.1 Amination alteration -- 11.3.1.2 Metal Cations -- 11.3.1.3 Cationic Polymers.
11.3.1.4 Magnetic Silica Nanosphere for Gene Delivery -- 11.3.2 Carbon Nanotubes for Gene Delivery -- 11.3.3 Carbon Nanotubes and Plant Biotechnology -- 11.3.4 Micro RNA Delivery in Crop Protection -- 11.4 Nano Based for Fertilizers Delivery -- 11.4.1 Nano fertilizer -- 11.4.2 Nano Fertiliser Formulations -- 11.4.2.1 Chemical-Based Nano Fertilizers Formulations -- 11.4.2.2 Biological Based Nano Biofertilizers Formulations -- 11.4.3 Nano Fertilizer Uptake, Translocation and Fate in Plants -- 11.4.4 Nano-Fertilizers for Abiotic and Biotic Stress Tolerance -- 11.4.5 Nanofertilizers Limitations -- 11.5 Nano-Based for Pesticides Delivery -- 11.5.1 Polymer-Based Encapsulation -- 11.5.1.1 Nanocapsules -- 11.5.1.2 Nanospheres -- 11.5.1.3 Micelles -- 11.5.1.4 Nanogels -- 11.5.2 Lipid NMS-based encapsulation -- 11.5.2.1 Nanoliposomes -- 11.5.2.2 Solid Lipid Nanoparticles (SLNs) -- 11.5.3 Clay NMS-based Encapsulation -- 11.5.3.1 Clay Nanomaterials -- 11.5.3.2 Layered Double Hydroxides (LDHs) -- 11.5.4 Others Encapsulation (Starch-etc) -- 11.6 Conclusion and Prospects -- References -- Chapter 12: Enhancement of Stress Tolerance of Crop Plants by ZnO Nanoparticles -- 12.1 Introduction -- 12.2 Effect of ZnO Nanoparticles' Properties on Biological Interaction in Soils and Colloids -- 12.3 Multiple Effects of Exposure Pathways -- 12.3.1 Seed Application -- 12.3.2 Soil Application -- 12.3.3 Foliar Application -- 12.3.4 Effect of Applied Nanoparticle Concentration and Soil Properties -- 12.4 Amelioration of Stress by ZnO NP -- 12.4.1 Biotic Stress -- 12.4.1.1 Herbivores -- 12.4.1.2 Pathogens -- 12.4.2 Abiotic Stress -- 12.4.2.1 Heavy Metals -- 12.4.2.2 Heat -- 12.4.2.3 Cold -- 12.4.2.4 Drought -- 12.4.2.5 Flooding -- 12.4.2.6 Salts -- 12.5 Conclusion and Future Outlook -- References.
Chapter 13: Effects of Nanoparticles on Alleviating Phytotoxicity of Soil Heavy Metals: Potential for Enhancing Phytoremediation.
Record Nr. UNINA-9910767585103321
Cham, Switzerland : , : Springer, , [2021]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui