top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Introduction to semiconductor physics and devices / / Mykhaylo Evstigneev
Introduction to semiconductor physics and devices / / Mykhaylo Evstigneev
Autore Evstigneev Mykhaylo
Pubbl/distr/stampa Cham, Switzerland : , : Springer, , [2022]
Descrizione fisica 1 online resource (325 pages)
Disciplina 621.38152
Soggetto topico Semiconductors
ISBN 9783031084584
9783031084577
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Intro -- Preface -- Contents -- Part I Fundamental Physics -- 1 Principles of Quantum Mechanics -- 1.1 Why Quantum Mechanics? -- 1.2 Wave-Particle Duality -- 1.3 Wavelength of a Free Particle in Terms of Its Energy -- 1.4 Energy Quantization -- 1.5 Radiation Spectrum of Hydrogen -- 1.6 The Wave Function -- 1.7 The Wave Function of a Free Particle -- 1.8 Schrödinger's Equation -- 1.8.1 Time-Dependent Schrödinger's Equation -- 1.8.2 Time-Independent Schrödinger's Equation -- 1.9 Probabilistic Interpretation and the Collapse of the Wave Function -- 1.10 Measurable and Unmeasurable in Quantum Mechanics -- 1.11 Electron States in a Hydrogen Atom -- 1.12 Spin -- 1.13 Degeneracy -- 1.14 Indistinguishability of Quantum Particles -- 1.15 Spin-Statistics Theorem -- 1.16 Pauli's Exclusion Principle -- 1.17 Problems -- 1.17.1 Solved Problems -- 1.17.2 Practice Problems -- 1.17.3 Solutions -- 2 Crystal Structure of Solids -- 2.1 Periodic Table of Elements -- 2.2 Chemical Bonding -- 2.3 Crystal Lattices -- 2.3.1 Atomic Order in Solids -- 2.3.2 Bravais Lattices -- 2.3.3 Unit Cell, Primitive Cell, and Crystal Basis -- 2.3.4 Volume Density and Atomic Packing Fraction -- 2.4 Basic Cubic Structures -- 2.5 Formation of Diamond Structure -- 2.6 Miller Indices -- 2.6.1 Determination of Miller Indices -- 2.6.2 Miller Indices for Cubic Structures -- 2.7 Imperfections and Impurities in Solids -- 2.8 Problems -- 2.8.1 Solved Problems -- 2.8.2 Practice Problems -- 2.8.3 Solutions -- 3 Equilibrium Statistical Mechanics -- 3.1 Microstates and Macrostates -- 3.2 Thermal Equilibrium -- 3.3 Postulate of Equal A Priori Probabilities -- 3.4 Grand Canonical Distribution -- 3.5 Fermi-Dirac Distribution -- 3.6 Boltzmann Approximation -- 3.7 Fermi Energy at Low Temperatures -- 3.8 Problems -- 3.8.1 Solved Problems -- 3.8.2 Practice Problems -- 3.8.3 Solutions.
4 Band Theory of Solids -- 4.1 Bloch's Theorem -- 4.2 Energy Bands -- 4.2.1 Physical Origin of the Energy Bands -- 4.2.2 The First Brillouin Zone -- Brillouin Zones -- One-Dimensional Crystal -- Band Gap -- The Energy-Momentum Diagrams in Three Dimensions -- Quasimomentum -- 4.2.3 Phase Velocity vs. Group Velocity -- Phase Velocity -- Group Velocity -- 4.2.4 Bloch Oscillations -- 4.3 Conduction Types of Solids -- 4.3.1 Band Filling and Electrical Conductivity -- 4.3.2 Metals and Semimetals -- 4.3.3 Dielectrics and Semiconductors -- 4.4 Conduction and Valence Bands -- 4.5 Holes -- 4.6 Effective Mass Tensor -- 4.7 Problems -- 4.7.1 Solved Problems -- 4.7.2 Practice Problems -- 4.7.3 Solutions -- Part II Semiconductors in and out of Equilibrium -- 5 Semiconductors in Equilibrium -- 5.1 Density of States -- 5.2 Equilibrium Carrier Concentration -- 5.3 Energy Probability Distribution -- 5.4 Density of States Effective Mass vs. Conductivity Effective Mass -- 5.4.1 Density of States Effective Mass -- 5.4.2 Conductivity Effective Mass -- Electrons -- Holes -- 5.4.3 Thermal Velocity -- 5.5 Intrinsic Semiconductors -- 5.6 Doping and Extrinsic Semiconductors -- 5.7 Impurity Energy Levels -- 5.8 Statistics of Donors and Acceptors -- 5.9 Mass Action Law -- 5.10 Charge Neutrality Equation -- 5.11 Ionization Regimes -- 5.11.1 Complete Ionization -- 5.11.2 Intrinsic Regime -- 5.11.3 Carrier Concentration in a Semiconductor with One Type of Doping at Not Too High Temperatures -- 5.11.4 Electron Freeze-Out Regime -- 5.12 Numerical Determination of Fermi Energy and Carrier Concentrations -- 5.13 Problems -- 5.13.1 Solved Problems -- 5.13.2 Practice Problems -- 5.13.3 Solutions -- 6 Carrier Concentration and Electric Potential -- 6.1 Electron and Hole Concentrations in a Non-uniform Electric Potential -- 6.2 Poisson's Equation.
6.3 Approximate Solution of Poisson's Equation -- 6.3.1 Problem Formulation -- 6.3.2 Debye Screening -- 6.3.3 Depletion Approximation -- 6.3.4 Validity Range of the Depletion Approximation -- 6.4 Band Diagrams and Band Bending -- 6.5 Electric Potential in a Semiconductor from Poisson's Equation -- 6.5.1 Exact Solution of Poisson's Equation -- 6.5.2 Numerical Results -- 6.6 Problems -- 6.6.1 Solved Problems -- 6.6.2 Practice Problems -- 6.6.3 Solutions -- 7 Generation-Recombination Processes -- 7.1 Recombination Mechanisms -- 7.2 Charge Carrier Dynamics -- 7.2.1 Generation and Recombination Rates -- 7.2.2 Recombination Time Approximation -- 7.3 Radiative Recombination -- 7.4 Auger Recombination -- 7.5 Shockley-Read-Hall (SRH) Recombination -- 7.5.1 Electron and Hole Capture and Emission by the Traps -- 7.5.2 The Principle of Detailed Balance -- 7.5.3 The Net SRH Recombination Rate -- 7.5.4 SRH Recombination Time -- 7.6 Surface Recombination -- 7.7 Quasi-Fermi Energies -- 7.8 Problems -- 7.8.1 Solved Problems -- 7.8.2 Practice Problems -- 7.8.3 Solutions -- 8 Carrier Transport -- 8.1 Flux and Electric Current Density -- 8.2 Diffusion Current -- 8.3 Drift Current -- 8.4 Conductivity and Resistivity -- 8.5 Current-Voltage Measurements -- 8.5.1 Photoconductivity -- 8.5.2 Hall Effect -- 8.6 Temperature and Doping Level Dependence of Mobility -- 8.7 Einstein's Relation -- 8.8 Continuity Equation -- 8.9 Problems -- 8.9.1 Solved Problems -- 8.9.2 Practice Problems -- 8.9.3 Solutions -- Part III Semiconductor Devices -- 9 Metal-Semiconductor Contact -- 9.1 Reasons to Study -- 9.2 Energy Band Diagram -- 9.3 SCR Capacitance -- 9.4 Ohmic Contact -- 9.5 Rectification in a Metal-Semiconductor Contact -- 9.5.1 Metal/n-Type Semiconductor Junction -- Qualitative Considerations -- 9.5.2 Reverse Saturation Current Density of a Schottky Diode.
9.5.3 Metal/p-Type Semiconductor Junction -- 9.6 Non-ideality Effects -- 9.7 Problems -- 9.7.1 Solved Problems -- 9.7.2 Practice Problems -- 9.7.3 Solutions -- 10 Metal-Oxide-Semiconductor Field Effect Transistor (MOSFET) -- 10.1 MOSFET Schematics and Operation Principle -- 10.2 Qualitative Description of MOSFET I-V Curve -- 10.3 Quantitative Description of a MOSFET I-V Curve -- 10.4 Determination of the Threshold Voltage -- 10.4.1 Energy Band Diagram of a MOS Structure at Zero Gate Voltage -- 10.4.2 Energy Band Diagram of a MOS Structure for Non-zero Gate Voltage -- 10.4.3 Oxide Voltage -- 10.4.4 Flat-Band Voltage -- 10.4.5 Threshold Voltage -- 10.5 Capacitance-Voltage Measurements -- 10.6 Problems -- 10.6.1 Solved Problems -- 10.6.2 Practice Problems -- 10.6.3 Solutions -- 11 PN Junction Diode -- 11.1 The Structure of a pn Junction -- 11.2 The Energy Band Diagram of a pn Junction at Zero Bias -- 11.3 PN Junction Under an External Bias -- 11.4 SCR Capacitance -- 11.5 Current-Voltage Relation of a pn Junction Diode -- 11.5.1 Charge Carrier Concentrations Near the Boundaries of the SCR -- 11.5.2 Current-Voltage Relation of an Ideal pn Junction Diode -- 11.5.3 Current Densities in a pn Diode -- 11.5.4 SCR Recombination Current -- 11.6 Problems -- 11.6.1 Solved Problems -- 11.6.2 Practice Problems -- 11.6.3 Solutions -- 12 Optoelectronic Devices -- 12.1 Solar Cells (SCs) -- 12.1.1 SC Operation -- 12.1.2 Spectral Irradiance (Spectral Intensity) -- 12.1.3 Light Absorption -- 12.1.4 SC Current-Voltage Relation -- 12.2 Light-Emitting Diodes (LEDs) -- 12.2.1 LED Operation -- 12.2.2 LED Spectrum -- 12.2.3 LED Efficiency -- 12.2.4 Increasing the LED Efficiency -- 12.3 Semiconductor Lasers -- 12.3.1 Stimulated Emission and Einstein's Coefficients -- 12.3.2 Generation of Light -- 12.3.3 Semiconductor Laser Operation -- The Structure of a Semiconductor Laser.
Threshold Current -- Laser Spectrum -- 12.4 Problems -- 12.4.1 Solved Problems -- 12.4.2 Practice Problems -- 12.4.3 Solutions -- Appendices -- A.1 A Crash Course in Complex Numbers -- A.2 Proof of Bloch's Theorem -- A.3 Properties of Si, Ge, and GaAs -- A.4 Evaluation of Exponential Integrals -- A.5 Planck's Radiation Law -- Index.
Record Nr. UNISA-996490350403316
Evstigneev Mykhaylo  
Cham, Switzerland : , : Springer, , [2022]
Materiale a stampa
Lo trovi qui: Univ. di Salerno
Opac: Controlla la disponibilità qui
Introduction to semiconductor physics and devices / / Mykhaylo Evstigneev
Introduction to semiconductor physics and devices / / Mykhaylo Evstigneev
Autore Evstigneev Mykhaylo
Pubbl/distr/stampa Cham, Switzerland : , : Springer, , [2022]
Descrizione fisica 1 online resource (325 pages)
Disciplina 621.38152
Soggetto topico Semiconductors
ISBN 9783031084584
9783031084577
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Intro -- Preface -- Contents -- Part I Fundamental Physics -- 1 Principles of Quantum Mechanics -- 1.1 Why Quantum Mechanics? -- 1.2 Wave-Particle Duality -- 1.3 Wavelength of a Free Particle in Terms of Its Energy -- 1.4 Energy Quantization -- 1.5 Radiation Spectrum of Hydrogen -- 1.6 The Wave Function -- 1.7 The Wave Function of a Free Particle -- 1.8 Schrödinger's Equation -- 1.8.1 Time-Dependent Schrödinger's Equation -- 1.8.2 Time-Independent Schrödinger's Equation -- 1.9 Probabilistic Interpretation and the Collapse of the Wave Function -- 1.10 Measurable and Unmeasurable in Quantum Mechanics -- 1.11 Electron States in a Hydrogen Atom -- 1.12 Spin -- 1.13 Degeneracy -- 1.14 Indistinguishability of Quantum Particles -- 1.15 Spin-Statistics Theorem -- 1.16 Pauli's Exclusion Principle -- 1.17 Problems -- 1.17.1 Solved Problems -- 1.17.2 Practice Problems -- 1.17.3 Solutions -- 2 Crystal Structure of Solids -- 2.1 Periodic Table of Elements -- 2.2 Chemical Bonding -- 2.3 Crystal Lattices -- 2.3.1 Atomic Order in Solids -- 2.3.2 Bravais Lattices -- 2.3.3 Unit Cell, Primitive Cell, and Crystal Basis -- 2.3.4 Volume Density and Atomic Packing Fraction -- 2.4 Basic Cubic Structures -- 2.5 Formation of Diamond Structure -- 2.6 Miller Indices -- 2.6.1 Determination of Miller Indices -- 2.6.2 Miller Indices for Cubic Structures -- 2.7 Imperfections and Impurities in Solids -- 2.8 Problems -- 2.8.1 Solved Problems -- 2.8.2 Practice Problems -- 2.8.3 Solutions -- 3 Equilibrium Statistical Mechanics -- 3.1 Microstates and Macrostates -- 3.2 Thermal Equilibrium -- 3.3 Postulate of Equal A Priori Probabilities -- 3.4 Grand Canonical Distribution -- 3.5 Fermi-Dirac Distribution -- 3.6 Boltzmann Approximation -- 3.7 Fermi Energy at Low Temperatures -- 3.8 Problems -- 3.8.1 Solved Problems -- 3.8.2 Practice Problems -- 3.8.3 Solutions.
4 Band Theory of Solids -- 4.1 Bloch's Theorem -- 4.2 Energy Bands -- 4.2.1 Physical Origin of the Energy Bands -- 4.2.2 The First Brillouin Zone -- Brillouin Zones -- One-Dimensional Crystal -- Band Gap -- The Energy-Momentum Diagrams in Three Dimensions -- Quasimomentum -- 4.2.3 Phase Velocity vs. Group Velocity -- Phase Velocity -- Group Velocity -- 4.2.4 Bloch Oscillations -- 4.3 Conduction Types of Solids -- 4.3.1 Band Filling and Electrical Conductivity -- 4.3.2 Metals and Semimetals -- 4.3.3 Dielectrics and Semiconductors -- 4.4 Conduction and Valence Bands -- 4.5 Holes -- 4.6 Effective Mass Tensor -- 4.7 Problems -- 4.7.1 Solved Problems -- 4.7.2 Practice Problems -- 4.7.3 Solutions -- Part II Semiconductors in and out of Equilibrium -- 5 Semiconductors in Equilibrium -- 5.1 Density of States -- 5.2 Equilibrium Carrier Concentration -- 5.3 Energy Probability Distribution -- 5.4 Density of States Effective Mass vs. Conductivity Effective Mass -- 5.4.1 Density of States Effective Mass -- 5.4.2 Conductivity Effective Mass -- Electrons -- Holes -- 5.4.3 Thermal Velocity -- 5.5 Intrinsic Semiconductors -- 5.6 Doping and Extrinsic Semiconductors -- 5.7 Impurity Energy Levels -- 5.8 Statistics of Donors and Acceptors -- 5.9 Mass Action Law -- 5.10 Charge Neutrality Equation -- 5.11 Ionization Regimes -- 5.11.1 Complete Ionization -- 5.11.2 Intrinsic Regime -- 5.11.3 Carrier Concentration in a Semiconductor with One Type of Doping at Not Too High Temperatures -- 5.11.4 Electron Freeze-Out Regime -- 5.12 Numerical Determination of Fermi Energy and Carrier Concentrations -- 5.13 Problems -- 5.13.1 Solved Problems -- 5.13.2 Practice Problems -- 5.13.3 Solutions -- 6 Carrier Concentration and Electric Potential -- 6.1 Electron and Hole Concentrations in a Non-uniform Electric Potential -- 6.2 Poisson's Equation.
6.3 Approximate Solution of Poisson's Equation -- 6.3.1 Problem Formulation -- 6.3.2 Debye Screening -- 6.3.3 Depletion Approximation -- 6.3.4 Validity Range of the Depletion Approximation -- 6.4 Band Diagrams and Band Bending -- 6.5 Electric Potential in a Semiconductor from Poisson's Equation -- 6.5.1 Exact Solution of Poisson's Equation -- 6.5.2 Numerical Results -- 6.6 Problems -- 6.6.1 Solved Problems -- 6.6.2 Practice Problems -- 6.6.3 Solutions -- 7 Generation-Recombination Processes -- 7.1 Recombination Mechanisms -- 7.2 Charge Carrier Dynamics -- 7.2.1 Generation and Recombination Rates -- 7.2.2 Recombination Time Approximation -- 7.3 Radiative Recombination -- 7.4 Auger Recombination -- 7.5 Shockley-Read-Hall (SRH) Recombination -- 7.5.1 Electron and Hole Capture and Emission by the Traps -- 7.5.2 The Principle of Detailed Balance -- 7.5.3 The Net SRH Recombination Rate -- 7.5.4 SRH Recombination Time -- 7.6 Surface Recombination -- 7.7 Quasi-Fermi Energies -- 7.8 Problems -- 7.8.1 Solved Problems -- 7.8.2 Practice Problems -- 7.8.3 Solutions -- 8 Carrier Transport -- 8.1 Flux and Electric Current Density -- 8.2 Diffusion Current -- 8.3 Drift Current -- 8.4 Conductivity and Resistivity -- 8.5 Current-Voltage Measurements -- 8.5.1 Photoconductivity -- 8.5.2 Hall Effect -- 8.6 Temperature and Doping Level Dependence of Mobility -- 8.7 Einstein's Relation -- 8.8 Continuity Equation -- 8.9 Problems -- 8.9.1 Solved Problems -- 8.9.2 Practice Problems -- 8.9.3 Solutions -- Part III Semiconductor Devices -- 9 Metal-Semiconductor Contact -- 9.1 Reasons to Study -- 9.2 Energy Band Diagram -- 9.3 SCR Capacitance -- 9.4 Ohmic Contact -- 9.5 Rectification in a Metal-Semiconductor Contact -- 9.5.1 Metal/n-Type Semiconductor Junction -- Qualitative Considerations -- 9.5.2 Reverse Saturation Current Density of a Schottky Diode.
9.5.3 Metal/p-Type Semiconductor Junction -- 9.6 Non-ideality Effects -- 9.7 Problems -- 9.7.1 Solved Problems -- 9.7.2 Practice Problems -- 9.7.3 Solutions -- 10 Metal-Oxide-Semiconductor Field Effect Transistor (MOSFET) -- 10.1 MOSFET Schematics and Operation Principle -- 10.2 Qualitative Description of MOSFET I-V Curve -- 10.3 Quantitative Description of a MOSFET I-V Curve -- 10.4 Determination of the Threshold Voltage -- 10.4.1 Energy Band Diagram of a MOS Structure at Zero Gate Voltage -- 10.4.2 Energy Band Diagram of a MOS Structure for Non-zero Gate Voltage -- 10.4.3 Oxide Voltage -- 10.4.4 Flat-Band Voltage -- 10.4.5 Threshold Voltage -- 10.5 Capacitance-Voltage Measurements -- 10.6 Problems -- 10.6.1 Solved Problems -- 10.6.2 Practice Problems -- 10.6.3 Solutions -- 11 PN Junction Diode -- 11.1 The Structure of a pn Junction -- 11.2 The Energy Band Diagram of a pn Junction at Zero Bias -- 11.3 PN Junction Under an External Bias -- 11.4 SCR Capacitance -- 11.5 Current-Voltage Relation of a pn Junction Diode -- 11.5.1 Charge Carrier Concentrations Near the Boundaries of the SCR -- 11.5.2 Current-Voltage Relation of an Ideal pn Junction Diode -- 11.5.3 Current Densities in a pn Diode -- 11.5.4 SCR Recombination Current -- 11.6 Problems -- 11.6.1 Solved Problems -- 11.6.2 Practice Problems -- 11.6.3 Solutions -- 12 Optoelectronic Devices -- 12.1 Solar Cells (SCs) -- 12.1.1 SC Operation -- 12.1.2 Spectral Irradiance (Spectral Intensity) -- 12.1.3 Light Absorption -- 12.1.4 SC Current-Voltage Relation -- 12.2 Light-Emitting Diodes (LEDs) -- 12.2.1 LED Operation -- 12.2.2 LED Spectrum -- 12.2.3 LED Efficiency -- 12.2.4 Increasing the LED Efficiency -- 12.3 Semiconductor Lasers -- 12.3.1 Stimulated Emission and Einstein's Coefficients -- 12.3.2 Generation of Light -- 12.3.3 Semiconductor Laser Operation -- The Structure of a Semiconductor Laser.
Threshold Current -- Laser Spectrum -- 12.4 Problems -- 12.4.1 Solved Problems -- 12.4.2 Practice Problems -- 12.4.3 Solutions -- Appendices -- A.1 A Crash Course in Complex Numbers -- A.2 Proof of Bloch's Theorem -- A.3 Properties of Si, Ge, and GaAs -- A.4 Evaluation of Exponential Integrals -- A.5 Planck's Radiation Law -- Index.
Record Nr. UNINA-9910616370403321
Evstigneev Mykhaylo  
Cham, Switzerland : , : Springer, , [2022]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui