top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
An introduction to latent class analysis : methods and applications / / Nobuoki Eshima
An introduction to latent class analysis : methods and applications / / Nobuoki Eshima
Autore Eshima Nobuoki
Pubbl/distr/stampa Singapore : , : Springer, , [2022]
Descrizione fisica 1 online resource (196 pages)
Disciplina 150.1943
Collana Behaviormetrics: Quantitative Approaches to Human Behavior
Soggetto topico Human behavior - Research
Human behavior - Philosophy
Variables aleatòries
Conducta (Psicologia)
Soggetto genere / forma Llibres electrònics
ISBN 9789811909726
9789811909719
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Intro -- Preface -- References -- Acknowledgements -- Contents -- 1 Overview of Basic Latent Structure Models -- 1.1 Introduction -- 1.2 Latent Class Model -- 1.3 Latent Trait Model -- 1.4 Latent Profile Model -- 1.5 Factor Analysis Model -- 1.6 Latent Structure Models in a Generalized Linear Model Framework -- 1.7 The EM Algorithm and Latent Structure Models -- 1.8 Discussion -- References -- 2 Latent Class Cluster Analysis -- 2.1 Introduction -- 2.2 The ML Estimation of Parameters in the Latent Class Model -- 2.3 Examples -- 2.4 Measuring Goodness-of-Fit of Latent Class Models -- 2.5 Comparison of Latent Classes -- 2.6 Latent Profile Analysis -- 2.7 Discussion -- References -- 3 Latent Class Analysis with Ordered Latent Classes -- 3.1 Introduction -- 3.2 Latent Distance Analysis -- 3.3 Assessment of the Latent Guttman Scaling -- 3.4 Analysis of the Association Between Two Latent Traits with Latent Guttman Scaling -- 3.5 Latent Ordered-Class Analysis -- 3.6 The Latent Trait Model (Item Response Model) -- 3.7 Discussion -- References -- 4 Latent Class Analysis with Latent Binary Variables: An Application for Analyzing Learning Structures -- 4.1 Introduction -- 4.2 Latent Class Model for Scaling Skill Acquisition Patterns -- 4.3 ML Estimation Procedure for Model (4.3) with (4.4) -- 4.4 Numerical Examples (Exploratory Analysis) -- 4.5 Dynamic Interpretation of Learning (Skill Acquisition) Structures -- 4.6 Estimation of Mixed Proportions of Learning Processes -- 4.7 Solution of the Separating Equations -- 4.8 Path Analysis in Learning Structures -- 4.9 Numerical Illustration (Confirmatory Analysis) -- 4.10 A Method for Ordering Skill Acquisition Patterns -- 4.11 Discussion -- References -- 5 The Latent Markov Chain Model -- 5.1 Introduction -- 5.2 The Latent Markov Chain Model -- 5.3 The ML Estimation of the Latent Markov Chain Model.
5.4 A Property of the ML Estimation Procedure via the EM Algorithm -- 5.5 Numerical Example I -- 5.6 Numerical Example II -- 5.7 A Latent Markov Chain Model with Missing Manifest Observations -- 5.8 A General Version of the Latent Markov Chain Model with Missing Manifest Observations -- 5.9 The Latent Markov Process Model -- 5.10 Discussion -- References -- 6 The Mixed Latent Markov Chain Model -- 6.1 Introduction -- 6.2 Dynamic Latent Class Models -- 6.3 The ML Estimation of the Parameters of Dynamic Latent Class Models -- 6.4 A Numerical Illustration -- 6.5 Discussion -- References -- 7 Path Analysis in Latent Class Models -- 7.1 Introduction -- 7.2 A Multiple-Indicator, Multiple-Cause Model -- 7.3 An Entropy-Based Path Analysis of Categorical Variables -- 7.4 Path Analysis in Multiple-Indicator, Multiple-Cause Models -- 7.4.1 The Multiple-Indicator, Multiple-Cause Model in Fig. 7.2a -- 7.4.2 The Multiple-Indicator, Multiple-Cause Model in Fig. 7.2b -- 7.5 Numerical Illustration I -- 7.5.1 Model I (Fig. 7.2a) -- 7.5.2 Model II (Fig. 7.2b) -- 7.6 Path Analysis of the Latent Markov Chain Model -- 7.7 Numerical Illustration II -- 7.8 Discussion -- References.
Record Nr. UNISA-996472039103316
Eshima Nobuoki  
Singapore : , : Springer, , [2022]
Materiale a stampa
Lo trovi qui: Univ. di Salerno
Opac: Controlla la disponibilità qui
An introduction to latent class analysis : methods and applications / / Nobuoki Eshima
An introduction to latent class analysis : methods and applications / / Nobuoki Eshima
Autore Eshima Nobuoki
Pubbl/distr/stampa Singapore : , : Springer, , [2022]
Descrizione fisica 1 online resource (196 pages)
Disciplina 150.1943
Collana Behaviormetrics: Quantitative Approaches to Human Behavior
Soggetto topico Human behavior - Research
Human behavior - Philosophy
Variables aleatòries
Conducta (Psicologia)
Soggetto genere / forma Llibres electrònics
ISBN 9789811909726
9789811909719
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Intro -- Preface -- References -- Acknowledgements -- Contents -- 1 Overview of Basic Latent Structure Models -- 1.1 Introduction -- 1.2 Latent Class Model -- 1.3 Latent Trait Model -- 1.4 Latent Profile Model -- 1.5 Factor Analysis Model -- 1.6 Latent Structure Models in a Generalized Linear Model Framework -- 1.7 The EM Algorithm and Latent Structure Models -- 1.8 Discussion -- References -- 2 Latent Class Cluster Analysis -- 2.1 Introduction -- 2.2 The ML Estimation of Parameters in the Latent Class Model -- 2.3 Examples -- 2.4 Measuring Goodness-of-Fit of Latent Class Models -- 2.5 Comparison of Latent Classes -- 2.6 Latent Profile Analysis -- 2.7 Discussion -- References -- 3 Latent Class Analysis with Ordered Latent Classes -- 3.1 Introduction -- 3.2 Latent Distance Analysis -- 3.3 Assessment of the Latent Guttman Scaling -- 3.4 Analysis of the Association Between Two Latent Traits with Latent Guttman Scaling -- 3.5 Latent Ordered-Class Analysis -- 3.6 The Latent Trait Model (Item Response Model) -- 3.7 Discussion -- References -- 4 Latent Class Analysis with Latent Binary Variables: An Application for Analyzing Learning Structures -- 4.1 Introduction -- 4.2 Latent Class Model for Scaling Skill Acquisition Patterns -- 4.3 ML Estimation Procedure for Model (4.3) with (4.4) -- 4.4 Numerical Examples (Exploratory Analysis) -- 4.5 Dynamic Interpretation of Learning (Skill Acquisition) Structures -- 4.6 Estimation of Mixed Proportions of Learning Processes -- 4.7 Solution of the Separating Equations -- 4.8 Path Analysis in Learning Structures -- 4.9 Numerical Illustration (Confirmatory Analysis) -- 4.10 A Method for Ordering Skill Acquisition Patterns -- 4.11 Discussion -- References -- 5 The Latent Markov Chain Model -- 5.1 Introduction -- 5.2 The Latent Markov Chain Model -- 5.3 The ML Estimation of the Latent Markov Chain Model.
5.4 A Property of the ML Estimation Procedure via the EM Algorithm -- 5.5 Numerical Example I -- 5.6 Numerical Example II -- 5.7 A Latent Markov Chain Model with Missing Manifest Observations -- 5.8 A General Version of the Latent Markov Chain Model with Missing Manifest Observations -- 5.9 The Latent Markov Process Model -- 5.10 Discussion -- References -- 6 The Mixed Latent Markov Chain Model -- 6.1 Introduction -- 6.2 Dynamic Latent Class Models -- 6.3 The ML Estimation of the Parameters of Dynamic Latent Class Models -- 6.4 A Numerical Illustration -- 6.5 Discussion -- References -- 7 Path Analysis in Latent Class Models -- 7.1 Introduction -- 7.2 A Multiple-Indicator, Multiple-Cause Model -- 7.3 An Entropy-Based Path Analysis of Categorical Variables -- 7.4 Path Analysis in Multiple-Indicator, Multiple-Cause Models -- 7.4.1 The Multiple-Indicator, Multiple-Cause Model in Fig. 7.2a -- 7.4.2 The Multiple-Indicator, Multiple-Cause Model in Fig. 7.2b -- 7.5 Numerical Illustration I -- 7.5.1 Model I (Fig. 7.2a) -- 7.5.2 Model II (Fig. 7.2b) -- 7.6 Path Analysis of the Latent Markov Chain Model -- 7.7 Numerical Illustration II -- 7.8 Discussion -- References.
Record Nr. UNINA-9910559397503321
Eshima Nobuoki  
Singapore : , : Springer, , [2022]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Statistical Data Analysis and Entropy [[electronic resource] /] / by Nobuoki Eshima
Statistical Data Analysis and Entropy [[electronic resource] /] / by Nobuoki Eshima
Autore Eshima Nobuoki
Edizione [1st ed. 2020.]
Pubbl/distr/stampa Singapore : , : Springer Singapore : , : Imprint : Springer, , 2020
Descrizione fisica 1 online resource (XI, 257 p. 43 illus.)
Disciplina 519.5
Collana Behaviormetrics: Quantitative Approaches to Human Behavior
Soggetto topico Statistics 
Statistics for Engineering, Physics, Computer Science, Chemistry and Earth Sciences
Statistical Theory and Methods
Statistics for Social Sciences, Humanities, Law
Statistics for Business, Management, Economics, Finance, Insurance
ISBN 981-15-2552-8
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Entropy and basic statistics -- Analysis of the association in two-way contingency tables -- Analysis of the association in multiway contingency tables -- Analysis of continuous variables.
Record Nr. UNISA-996418255603316
Eshima Nobuoki  
Singapore : , : Springer Singapore : , : Imprint : Springer, , 2020
Materiale a stampa
Lo trovi qui: Univ. di Salerno
Opac: Controlla la disponibilità qui
Statistical Data Analysis and Entropy / / by Nobuoki Eshima
Statistical Data Analysis and Entropy / / by Nobuoki Eshima
Autore Eshima Nobuoki
Edizione [1st ed. 2020.]
Pubbl/distr/stampa Singapore : , : Springer Nature Singapore : , : Imprint : Springer, , 2020
Descrizione fisica 1 online resource (XI, 257 p. 43 illus.)
Disciplina 519.5
Collana Behaviormetrics: Quantitative Approaches to Human Behavior
Soggetto topico Statistics
Social sciences - Statistical methods
Statistics in Engineering, Physics, Computer Science, Chemistry and Earth Sciences
Statistical Theory and Methods
Statistics in Social Sciences, Humanities, Law, Education, Behavorial Sciences, Public Policy
Statistics in Business, Management, Economics, Finance, Insurance
ISBN 981-15-2552-8
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Entropy and basic statistics -- Analysis of the association in two-way contingency tables -- Analysis of the association in multiway contingency tables -- Analysis of continuous variables.
Record Nr. UNINA-9910483487703321
Eshima Nobuoki  
Singapore : , : Springer Nature Singapore : , : Imprint : Springer, , 2020
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui