top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Algebraic graph algorithms : a practical guide using Python / / K. Erciyes
Algebraic graph algorithms : a practical guide using Python / / K. Erciyes
Autore Erciyes Kayhan
Pubbl/distr/stampa Cham, Switzerland : , : Springer, , [2021]
Descrizione fisica 1 online resource (229 pages)
Disciplina 511.5
Collana Undergraduate Topics in Computer Science
Soggetto topico Graph algorithms
Python (Computer program language)
ISBN 9783030878863
9783030878856
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNISA-996464410103316
Erciyes Kayhan  
Cham, Switzerland : , : Springer, , [2021]
Materiale a stampa
Lo trovi qui: Univ. di Salerno
Opac: Controlla la disponibilità qui
Algebraic Graph Algorithms : A Practical Guide Using Python / / by K. Erciyes
Algebraic Graph Algorithms : A Practical Guide Using Python / / by K. Erciyes
Autore Erciyes Kayhan
Edizione [1st ed. 2021.]
Pubbl/distr/stampa Cham : , : Springer International Publishing : , : Imprint : Springer, , 2021
Descrizione fisica 1 online resource (229 pages)
Disciplina 511.5
Collana Undergraduate Topics in Computer Science
Soggetto topico Computer science
Computer science - Mathematics
Discrete mathematics
Theory of Computation
Discrete Mathematics in Computer Science
Mathematical Applications in Computer Science
Python (Llenguatge de programació)
Algorismes
Àlgebra
Soggetto genere / forma Llibres electrònics
ISBN 9783030878863
9783030878856
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto 1. Introduction -- 2. Graphs, Matrices and Matroids -- 3. Parallel Matrix Algorithm Kernel -- 4. Basic Graph Algorithms -- 5. Connectivity, Matching and Matroids -- 6. Subgraph Search -- 7. Analysis of Large Graphs -- 8. Clustering in Complex Networks -- 9. Kronecker Graphs -- 10. Sample Algorithms for Complex Networks.
Record Nr. UNINA-9910510574003321
Erciyes Kayhan  
Cham : , : Springer International Publishing : , : Imprint : Springer, , 2021
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Distributed and Sequential Algorithms for Bioinformatics / / by Kayhan Erciyes
Distributed and Sequential Algorithms for Bioinformatics / / by Kayhan Erciyes
Autore Erciyes Kayhan
Edizione [1st ed. 2015.]
Pubbl/distr/stampa Cham : , : Springer International Publishing : , : Imprint : Springer, , 2015
Descrizione fisica 1 online resource (XVII, 367 p. 157 illus. in color.)
Disciplina 570.285
Collana Computational Biology
Soggetto topico Bioinformatics
Algorithms
Systems biology
Biological systems
Computer science—Mathematics
Computational Biology/Bioinformatics
Algorithm Analysis and Problem Complexity
Systems Biology
Math Applications in Computer Science
ISBN 3-319-24966-5
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Intro -- Preface -- Contents -- 1 Introduction -- 1.1 Introduction -- 1.2 Biological Sequences -- 1.3 Biological Networks -- 1.4 The Need for Distributed Algorithms -- 1.5 Outline of the Book -- Part IBackground -- 2 Introduction to Molecular Biology -- 2.1 Introduction -- 2.2 The Cell -- 2.2.1 DNA -- 2.2.2 RNA -- 2.2.3 Genes -- 2.2.4 Proteins -- 2.3 Central Dogma of Life -- 2.3.1 Transcription -- 2.3.2 The Genetic Code -- 2.3.3 Translation -- 2.3.4 Mutations -- 2.4 Biotechnological Methods -- 2.4.1 Cloning -- 2.4.2 Polymerase Chain Reaction -- 2.4.3 DNA Sequencing -- 2.5 Databases -- 2.5.1 Nucleotide Databases -- 2.5.2 Protein Sequence Databases -- 2.6 Human Genome Project -- 2.7 Chapter Notes -- 3 Graphs, Algorithms, and Complexity -- 3.1 Introduction -- 3.2 Graphs -- 3.2.1 Types of Graphs -- 3.2.2 Graph Representations -- 3.2.3 Paths, Cycles, and Connectivity -- 3.2.4 Trees -- 3.2.5 Spectral Properties of Graphs -- 3.3 Algorithms -- 3.3.1 Time and Space Complexities -- 3.3.2 Recurrences -- 3.3.3 Fundamental Approaches -- 3.3.4 Dynamic Programming -- 3.3.5 Graph Algorithms -- 3.3.6 Special Subgraphs -- 3.4 NP-Completeness -- 3.4.1 Reductions -- 3.4.2 Coping with NP-Completeness -- 3.5 Chapter Notes -- 4 Parallel and Distributed Computing -- 4.1 Introduction -- 4.2 Architectures for Parallel and Distributed Computing -- 4.2.1 Interconnection Networks -- 4.2.2 Multiprocessors and Multicomputers -- 4.2.3 Flynn's Taxonomy -- 4.3 Parallel Computing -- 4.3.1 Complexity of Parallel Algorithms -- 4.3.2 Parallel Random Access Memory Model -- 4.3.3 Parallel Algorithm Design Methods -- 4.3.4 Shared Memory Programming -- 4.3.5 Multi-threaded Programming -- 4.3.6 Parallel Processing in UNIX -- 4.4 Distributed Computing -- 4.4.1 Distributed Algorithm Design -- 4.4.2 Threads Re-visited -- 4.4.3 Message Passing Interface.
4.4.4 Distributed Processing in UNIX -- 4.5 Chapter Notes -- Part IIBiological Sequences -- 5 String Algorithms -- 5.1 Introduction -- 5.2 Exact String Matching -- 5.2.1 Sequential Algorithms -- 5.2.2 Distributed String Matching -- 5.3 Approximate String Matching -- 5.4 Longest Subsequence Problems -- 5.4.1 Longest Common Subsequence -- 5.4.2 Longest Increasing Subsequence -- 5.5 Suffix Trees -- 5.5.1 Construction of Suffix Trees -- 5.5.2 Applications of Suffix Trees -- 5.5.3 Suffix Arrays -- 5.6 Chapter Notes -- 6 Sequence Alignment -- 6.1 Introduction -- 6.2 Problem Statement -- 6.2.1 The Objective Function -- 6.2.2 Scoring Matrices for Proteins -- 6.3 Pairwise Alignment -- 6.3.1 Global Alignment -- 6.3.2 Local Alignment -- 6.4 Multiple Sequence Alignment -- 6.4.1 Center Star Method -- 6.4.2 Progressive Alignment -- 6.5 Alignment with Suffix Trees -- 6.6 Database Search -- 6.6.1 FASTA -- 6.6.2 BLAST -- 6.7 Parallel and Distributed Sequence Alignment -- 6.7.1 Parallel and Distributed SW Algorithm -- 6.7.2 Distributed BLAST -- 6.7.3 Parallel/Distributed CLUSTALW -- 6.8 Chapter Notes -- 7 Clustering of Biological Sequences -- 7.1 Introduction -- 7.2 Analysis -- 7.2.1 Distance and Similarity Measures -- 7.2.2 Validation of Cluster Quality -- 7.3 Classical Methods -- 7.3.1 Hierarchical Algorithms -- 7.3.2 Partitional Algorithms -- 7.3.3 Other Methods -- 7.4 Clustering Algorithms Targeting Biological Sequences -- 7.4.1 Alignment-Based Clustering -- 7.4.2 Other Similarity-Based Methods -- 7.4.3 Graph-Based Clustering -- 7.5 Distributed Clustering -- 7.5.1 Hierarchical Clustering -- 7.5.2 k-means Clustering -- 7.5.3 Graph-Based Clustering -- 7.5.4 Review of Existing Algorithms -- 7.6 Chapter Notes -- 8 Sequence Repeats -- 8.1 Introduction -- 8.2 Tandem Repeats -- 8.2.1 Stoye and Gusfield Algorithm -- 8.2.2 Distributed Tandem Repeat Search.
8.3 Sequence Motifs -- 8.3.1 Probabilistic Approaches -- 8.3.2 Combinatorial Methods -- 8.3.3 Parallel and Distributed Motif Search -- 8.3.4 A Survey of Recent Distributed Algorithms -- 8.4 Chapter Notes -- 9 Genome Analysis -- 9.1 Introduction -- 9.2 Gene Finding -- 9.2.1 Fundamental Methods -- 9.2.2 Hidden Markov Models -- 9.2.3 Nature Inspired Methods -- 9.2.4 Distributed Gene Finding -- 9.3 Genome Rearrangement -- 9.3.1 Sorting by Reversals -- 9.3.2 Unsigned Reversals -- 9.3.3 Signed Reversals -- 9.3.4 Distributed Genome Rearrangement Algorithms -- 9.4 Haplotype Inference -- 9.4.1 Problem Statement -- 9.4.2 Clark's Algorithm -- 9.4.3 EM Algorithm -- 9.4.4 Distributed Haplotype Inference Algorithms -- 9.5 Chapter Notes -- Part IIIBiological Networks -- 10 Analysis of Biological Networks -- 10.1 Introduction -- 10.2 Networks in the Cell -- 10.2.1 Metabolic Networks -- 10.2.2 Gene Regulation Networks -- 10.2.3 Protein Interaction Networks -- 10.3 Networks Outside the Cell -- 10.3.1 Networks of the Brain -- 10.3.2 Phylogenetic Networks -- 10.3.3 The Food Web -- 10.4 Properties of Biological Networks -- 10.4.1 Distance -- 10.4.2 Vertex Degrees -- 10.4.3 Clustering Coefficient -- 10.4.4 Matching Index -- 10.5 Centrality -- 10.5.1 Degree Centrality -- 10.5.2 Closeness Centrality -- 10.5.3 Betweenness Centrality -- 10.5.4 Eigenvalue Centrality -- 10.6 Network Models -- 10.6.1 Random Networks -- 10.6.2 Small World Networks -- 10.6.3 Scale-Free Networks -- 10.6.4 Hierarchical Networks -- 10.7 Module Detection -- 10.8 Network Motifs -- 10.9 Network Alignment -- 10.10 Chapter Notes -- 11 Cluster Discovery in Biological Networks -- 11.1 Introduction -- 11.2 Analysis -- 11.2.1 Quality Metrics -- 11.2.2 Classification of Clustering Algorithms -- 11.3 Hierarchical Clustering -- 11.3.1 MST-Based Clustering -- 11.3.2 Edge-Betweenness-Based Clustering.
11.4 Density-Based Clustering -- 11.4.1 Clique Algorithms -- 11.4.2 k-core Decomposition -- 11.4.3 Highly Connected Subgraphs Algorithm -- 11.4.4 Modularity-Based Clustering -- 11.5 Flow Simulation-Based Approaches -- 11.5.1 Markov Clustering Algorithm -- 11.5.2 Distributed Markov Clustering Algorithm Proposal -- 11.6 Spectral Clustering -- 11.7 Chapter Notes -- 12 Network Motif Search -- 12.1 Introduction -- 12.2 Problem Statement -- 12.2.1 Methods of Motif Discovery -- 12.2.2 Relation to Graph Isomorphism -- 12.2.3 Frequency Concepts -- 12.2.4 Random Graph Generation -- 12.2.5 Statistical Significance -- 12.3 A Review of Sequential Motif Searching Algorithms -- 12.3.1 Network Centric Algorithms -- 12.3.2 Motif Centric Algorithms -- 12.4 Distributed Motif Discovery -- 12.4.1 A General Framework -- 12.4.2 Review of Distributed Motif Searching Algorithms -- 12.4.3 Wang et al.'s Algorithm -- 12.4.4 Schatz et al.'s Algorithm -- 12.4.5 Riberio et al.'s Algorithms -- 12.5 Chapter Notes -- 13 Network Alignment -- 13.1 Introduction -- 13.2 Problem Statement -- 13.2.1 Relation to Graph Isomorphism -- 13.2.2 Relation to Bipartite Graph Matching -- 13.2.3 Evaluation of Alignment Quality -- 13.2.4 Network Alignment Methods -- 13.3 Review of Sequential Network Alignment Algorithms -- 13.3.1 PathBlast -- 13.3.2 IsoRank -- 13.3.3 MaWIsh -- 13.3.4 GRAAL -- 13.3.5 Recent Algorithms -- 13.4 Distributed Network Alignment -- 13.4.1 A Distributed Greedy Approximation Algorithm Proposal -- 13.4.2 Distributed Hoepman's Algorithm -- 13.4.3 Distributed Auction Algorithms -- 13.5 Chapter Notes -- 14 Phylogenetics -- 14.1 Introduction -- 14.2 Terminology -- 14.3 Phylogenetic Trees -- 14.3.1 Distance-Based Algorithms -- 14.3.2 Maximum Parsimony -- 14.3.3 Maximum Likelihood -- 14.4 Phylogenetic Networks -- 14.4.1 Reconstruction Methods -- 14.5 Chapter Notes -- 15 Epilogue.
15.1 Introduction -- 15.2 Current Challenges -- 15.2.1 Big Data Analysis -- 15.2.2 Disease Analysis -- 15.2.3 Bioinformatics Education -- 15.3 Specific Challenges -- 15.3.1 Sequence Analysis -- 15.3.2 Network Analysis -- 15.4 Future Directions -- 15.4.1 Big Data Gets Bigger -- 15.4.2 New Paradigms on Disease Analysis -- 15.4.3 Personalized Medicine -- Index.
Record Nr. UNINA-9910299257803321
Erciyes Kayhan  
Cham : , : Springer International Publishing : , : Imprint : Springer, , 2015
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Distributed Graph Algorithms for Computer Networks / / by Kayhan Erciyes
Distributed Graph Algorithms for Computer Networks / / by Kayhan Erciyes
Autore Erciyes Kayhan
Edizione [1st ed. 2013.]
Pubbl/distr/stampa London : , : Springer London : , : Imprint : Springer, , 2013
Descrizione fisica 1 online resource (327 p.)
Disciplina 004.36
Collana Computer Communications and Networks
Soggetto topico Algorithms
Computer communication systems
Computer science—Mathematics
Algorithm Analysis and Problem Complexity
Computer Communication Networks
Math Applications in Computer Science
ISBN 1-4471-5173-9
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Introduction -- Part I: Fundamental Algorithms -- Graphs -- The Computational Model -- Spanning Tree Construction -- Graph Traversals -- Minimal Spanning Trees -- Routing -- Self-Stabilization -- Part II: Graph Theoretical Algorithms -- Vertex Coloring -- Maximal Independent Sets -- Dominating Sets -- Matching -- Vertex Cover -- Part III: Ad Hoc Wireless Networks -- Introduction -- Topology Control -- Ad Hoc Routing -- Sensor Network Applications -- ASSIST: A Simulator to Develop Distributed Algorithms -- Pseudocode Conventions -- ASSIST Code -- Applications Using ASSIST.
Record Nr. UNINA-9910741142203321
Erciyes Kayhan  
London : , : Springer London : , : Imprint : Springer, , 2013
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui