Evolutionary Multi-Criterion Optimization : 12th International Conference, EMO 2023, Leiden, the Netherlands, March 20-24, 2023, Proceedings / / Michael Emmerich [and seven others], editors |
Edizione | [First edition.] |
Pubbl/distr/stampa | Cham, Switzerland : , : Springer, Springer Nature Switzerland AG, , [2023] |
Descrizione fisica | 1 online resource (646 pages) |
Disciplina | 519.3 |
Collana | Lecture Notes in Computer Science Series |
Soggetto topico |
Mathematical optimization
Multiple criteria decision making |
ISBN | 3-031-27250-1 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | Algorithm Design and Engineering -- Visual Exploration of the Effect of Constraint Handling in Multiobjective Optimization -- A Two-stage Algorithm for Integer Multiobjective Simulation Optimization -- RegEMO: Sacrificing Pareto-Optimality for Regularity in Multi-objective Problem-Solving -- Cooperative coevolutionary NSGA-II with Linkage Measurement Minimization for Large-scale Multi-objective Optimization -- Data-Driven Evolutionary Multi-Objective Optimization Based on Multiple-Gradient Descent for Disconnected Pareto Fronts -- Eliminating Non-dominated Sorting from NSGA-III -- Scalability of Multi-Objective Evolutionary Algorithms for Solving Real-World Complex Optimization Problems -- Machine Learning and Multi-criterion Optimization -- Multi-Objective Learning using HV Maximization -- Sparse Adversarial Attack via Bi-Objective Optimization -- Investigating Innovized Progress Operators with Different Machine Learning Methods -- End-to-End Pareto Set Prediction with Graph Neural Networks for Multi-objective Facility Location -- Online Learning Hyper-Heuristics in Multi-Objective Evolutionary Algorithms -- Surrogate-assisted Multi-objective Optimization via Genetic Programming based Symbolic Regression -- Learning to Predict Pareto-optimal Solutions From Pseudo-weights -- A Relation Surrogate Model for Expensive Multiobjective Continuous and Combinatorial Optimization -- Pareto Front Upconvert by Iterative Estimation Modeling and Solution Sampling -- Pareto Front Upconvert by Iterative Estimation Modeling and Solution Sampling -- Approximation of a Pareto Set Segment Using a Linear Model with Sharing Variables -- Feature-based Benchmarking of Distance-based Multi/Many-objective Optimisation Problems: A Machine Learning Perspective -- Benchmarking and Performance Assessment -- Partially Degenerate Multi-Objective Test Problems -- Peak-A-Boo! Generating Multi-Objective Multiple Peaks Benchmark Problems with Precise Pareto Sets -- MACO: A Real-world inspired Benchmark for Multi-objective Evolutionary Algorithms -- A scalable test suite for bi-objective multidisciplinary optimisation -- Performance Evaluation of Multi-Objective Evolutionary Algorithms using Artificial and Real-World Problems -- A Novel Performance Indicator based on the Linear Assignment Problem -- A Test Suite for Multi-objective Multi-fidelity Optimization -- Indicator Design and Complexity Analysis -- Diversity enhancement via magnitude -- Two-Stage Greedy Approximated Hypervolume Subset Selection for Large-Scale Problems -- Two-Stage Greedy Approximated Hypervolume Subset Selection for Large-Scale Problems -- On the Computational Complexity of Efficient Non-Dominated Sort using Binary Search -- Applications in Real World Domains -- Evolutionary Algorithms with Machine Learning Models for Multiobjective Optimization in Epidemics Control -- Joint Price Optimization across a Portfolio of Fashion E-commerce Products -- Improving MOEA/D with Knowledge Discovery. Application to a Bi-Objective Routing Problem -- The Prism-Net Search Space Representation for Multi-Objective Building Spatial Design -- Selection Strategies for a Balanced Multi- or Many-Objective Molecular Optimization and Genetic Diversity: a Comparative Study -- A Multi-objective Evolutionary Framework for Identifying Dengue Stage-Specific Differentially Co-expressed and Functionally Enriched Gene Modules -- A Multi-objective Evolutionary Framework for Identifying Dengue Stage-Specific Differentially Co-expressed and Functionally Enriched Gene Modules. -Multiobjective Optimization of Evolutionary Neural Networks for Animal Trade Movements Prediction -- Transfer of Multi-Objectively Tuned CMA-ES Parameters to a Vehicle Dynamics Problem -- Multi-Criteria Decision Making and Interactive Algorithms -- Preference-Based Nonlinear Normalization for Multiobjective Optimization -- Incorporating preference information interactively in NSGA-III by the adaptation of reference vectors -- A Systematic Way of Structuring Real-World Multiobjective Optimization Problems -- IK-EMOViz: An Interactive Knowledge-based Evolutionary Multi-objective Optimization Framework -- An Interactive Decision Tree-Based Evolutionary Multi-Objective Algorithm. |
Record Nr. | UNINA-9910682588503321 |
Cham, Switzerland : , : Springer, Springer Nature Switzerland AG, , [2023] | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Evolutionary Multi-Criterion Optimization : 12th International Conference, EMO 2023, Leiden, the Netherlands, March 20-24, 2023, Proceedings / / Michael Emmerich [and seven others], editors |
Edizione | [First edition.] |
Pubbl/distr/stampa | Cham, Switzerland : , : Springer, Springer Nature Switzerland AG, , [2023] |
Descrizione fisica | 1 online resource (646 pages) |
Disciplina | 519.3 |
Collana | Lecture Notes in Computer Science Series |
Soggetto topico |
Mathematical optimization
Multiple criteria decision making |
ISBN | 3-031-27250-1 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | Algorithm Design and Engineering -- Visual Exploration of the Effect of Constraint Handling in Multiobjective Optimization -- A Two-stage Algorithm for Integer Multiobjective Simulation Optimization -- RegEMO: Sacrificing Pareto-Optimality for Regularity in Multi-objective Problem-Solving -- Cooperative coevolutionary NSGA-II with Linkage Measurement Minimization for Large-scale Multi-objective Optimization -- Data-Driven Evolutionary Multi-Objective Optimization Based on Multiple-Gradient Descent for Disconnected Pareto Fronts -- Eliminating Non-dominated Sorting from NSGA-III -- Scalability of Multi-Objective Evolutionary Algorithms for Solving Real-World Complex Optimization Problems -- Machine Learning and Multi-criterion Optimization -- Multi-Objective Learning using HV Maximization -- Sparse Adversarial Attack via Bi-Objective Optimization -- Investigating Innovized Progress Operators with Different Machine Learning Methods -- End-to-End Pareto Set Prediction with Graph Neural Networks for Multi-objective Facility Location -- Online Learning Hyper-Heuristics in Multi-Objective Evolutionary Algorithms -- Surrogate-assisted Multi-objective Optimization via Genetic Programming based Symbolic Regression -- Learning to Predict Pareto-optimal Solutions From Pseudo-weights -- A Relation Surrogate Model for Expensive Multiobjective Continuous and Combinatorial Optimization -- Pareto Front Upconvert by Iterative Estimation Modeling and Solution Sampling -- Pareto Front Upconvert by Iterative Estimation Modeling and Solution Sampling -- Approximation of a Pareto Set Segment Using a Linear Model with Sharing Variables -- Feature-based Benchmarking of Distance-based Multi/Many-objective Optimisation Problems: A Machine Learning Perspective -- Benchmarking and Performance Assessment -- Partially Degenerate Multi-Objective Test Problems -- Peak-A-Boo! Generating Multi-Objective Multiple Peaks Benchmark Problems with Precise Pareto Sets -- MACO: A Real-world inspired Benchmark for Multi-objective Evolutionary Algorithms -- A scalable test suite for bi-objective multidisciplinary optimisation -- Performance Evaluation of Multi-Objective Evolutionary Algorithms using Artificial and Real-World Problems -- A Novel Performance Indicator based on the Linear Assignment Problem -- A Test Suite for Multi-objective Multi-fidelity Optimization -- Indicator Design and Complexity Analysis -- Diversity enhancement via magnitude -- Two-Stage Greedy Approximated Hypervolume Subset Selection for Large-Scale Problems -- Two-Stage Greedy Approximated Hypervolume Subset Selection for Large-Scale Problems -- On the Computational Complexity of Efficient Non-Dominated Sort using Binary Search -- Applications in Real World Domains -- Evolutionary Algorithms with Machine Learning Models for Multiobjective Optimization in Epidemics Control -- Joint Price Optimization across a Portfolio of Fashion E-commerce Products -- Improving MOEA/D with Knowledge Discovery. Application to a Bi-Objective Routing Problem -- The Prism-Net Search Space Representation for Multi-Objective Building Spatial Design -- Selection Strategies for a Balanced Multi- or Many-Objective Molecular Optimization and Genetic Diversity: a Comparative Study -- A Multi-objective Evolutionary Framework for Identifying Dengue Stage-Specific Differentially Co-expressed and Functionally Enriched Gene Modules -- A Multi-objective Evolutionary Framework for Identifying Dengue Stage-Specific Differentially Co-expressed and Functionally Enriched Gene Modules. -Multiobjective Optimization of Evolutionary Neural Networks for Animal Trade Movements Prediction -- Transfer of Multi-Objectively Tuned CMA-ES Parameters to a Vehicle Dynamics Problem -- Multi-Criteria Decision Making and Interactive Algorithms -- Preference-Based Nonlinear Normalization for Multiobjective Optimization -- Incorporating preference information interactively in NSGA-III by the adaptation of reference vectors -- A Systematic Way of Structuring Real-World Multiobjective Optimization Problems -- IK-EMOViz: An Interactive Knowledge-based Evolutionary Multi-objective Optimization Framework -- An Interactive Decision Tree-Based Evolutionary Multi-Objective Algorithm. |
Record Nr. | UNISA-996517752703316 |
Cham, Switzerland : , : Springer, Springer Nature Switzerland AG, , [2023] | ||
Materiale a stampa | ||
Lo trovi qui: Univ. di Salerno | ||
|
EVOLVE - a bridge between probability, set oriented numerics, and evolutionary computation IV : international conference held at Leiden University, July 10-13, 2013 / / Michael Emmerich ... [et al.] |
Edizione | [1st ed. 2013.] |
Pubbl/distr/stampa | Cham, Germany, : Springer, c2013 |
Descrizione fisica | 1 online resource (xiii, 324 pages) : illustrations (some color) |
Disciplina | 005.432 |
Altri autori (Persone) | EmmerichMichael |
Collana | Advances in Intelligent Systems and Computing |
Soggetto topico |
Evolutionary computation
Combinatorial optimization Engineering Artificial intelligence Computational intelligence |
ISBN | 3-319-01128-6 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | Machine Learning and Probabilistic Models -- Complex Networks and Evolutionary Computation -- Diversity Oriented Optimization -- Set-oriented Numerics and Evolutionary Multiobjective Optimization -- Genetic Programming -- Robust Optimization. |
Record Nr. | UNINA-9910438059603321 |
Cham, Germany, : Springer, c2013 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
EVOLVE - A Bridge between Probability, Set Oriented Numerics, and Evolutionary Computation V / / edited by Alexandru-Adrian Tantar, Emilia Tantar, Jian-Qiao Sun, Wei Zhang, Qian Ding, Oliver Schütze, Michael Emmerich, Pierrick Legrand, Pierre Del Moral, Carlos A. Coello Coello |
Edizione | [1st ed. 2014.] |
Pubbl/distr/stampa | Cham : , : Springer International Publishing : , : Imprint : Springer, , 2014 |
Descrizione fisica | 1 online resource (329 p.) |
Disciplina | 006.3 |
Collana | Advances in Intelligent Systems and Computing |
Soggetto topico |
Computational intelligence
Artificial intelligence Computational Intelligence Artificial Intelligence |
ISBN | 3-319-07494-6 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | Set Oriented Numerics -- Computational Game Theory -- Machine Learning Applied to Networks -- Complex Networks and Landscape Analysis -- Local Search and Optimization -- Genetic Programming -- Evolutionary Multiobjective Optimization -- Practical Aspects of Evolutionary Algorithms. |
Record Nr. | UNINA-9910299753403321 |
Cham : , : Springer International Publishing : , : Imprint : Springer, , 2014 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
EVOLVE - A Bridge between Probability, Set Oriented Numerics, and Evolutionary Computation VI / / edited by Alexandru-Adrian Tantar, Emilia Tantar, Michael Emmerich, Pierrick Legrand, Lenuta Alboaie, Henri Luchian |
Edizione | [1st ed. 2018.] |
Pubbl/distr/stampa | Cham : , : Springer International Publishing : , : Imprint : Springer, , 2018 |
Descrizione fisica | 1 online resource (XIV, 226 p. 84 illus.) |
Disciplina | 519.3 |
Collana | Advances in Intelligent Systems and Computing |
Soggetto topico |
Computational intelligence
Artificial intelligence Computational Intelligence Artificial Intelligence |
ISBN | 3-319-69710-2 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Record Nr. | UNINA-9910299877203321 |
Cham : , : Springer International Publishing : , : Imprint : Springer, , 2018 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
EVOLVE – A Bridge between Probability, Set Oriented Numerics and Evolutionary Computation VII / / edited by Michael Emmerich, André Deutz, Oliver Schütze, Pierrick Legrand, Emilia Tantar, Alexandru-Adrian Tantar |
Edizione | [1st ed. 2017.] |
Pubbl/distr/stampa | Cham : , : Springer International Publishing : , : Imprint : Springer, , 2017 |
Descrizione fisica | 1 online resource (VIII, 210 p. 75 illus., 36 illus. in color.) |
Disciplina | 005.432 |
Collana | Studies in Computational Intelligence |
Soggetto topico |
Computational intelligence
Artificial intelligence Probabilities Computer science—Mathematics Computer mathematics Computational Intelligence Artificial Intelligence Probability Theory and Stochastic Processes Mathematics of Computing Computational Mathematics and Numerical Analysis |
ISBN | 3-319-49325-6 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | A Survey of Diversity Oriented Optimization: Problems, Indicators, and Algorithms -- Global Multi-Objective Optimization by Means of Cell Mapping Techniques -- Percentile via Polynomial Chaos Expansion: Bridging Robust Optimization with Reliability -- Evolutionary Equilibrium Detection in Multicriteria Games -- A New Estimation of Distribution Algorithm for Nash Equilibria Detection -- Multi-Objective Optimisation by Self-Adaptive Evolutionary Algorithm -- Evidence Based Multidisciplinary Robust Optimization for Mars Micro Entry Probe Design -- A Simulation-Based Algorithm for the Probabilistic Traveling Salesman Problem -- Average Cuboid Volume as a Convergence Indicator and Selection Criterion for Multi-Objective Biochemical Optimization. |
Record Nr. | UNINA-9910254344603321 |
Cham : , : Springer International Publishing : , : Imprint : Springer, , 2017 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Many-Criteria Optimization and Decision Analysis [[electronic resource] ] : State-of-the-Art, Present Challenges, and Future Perspectives / / edited by Dimo Brockhoff, Michael Emmerich, Boris Naujoks, Robin Purshouse |
Autore | Brockhoff Dimo |
Edizione | [1st ed. 2023.] |
Pubbl/distr/stampa | Cham : , : Springer International Publishing : , : Imprint : Springer, , 2023 |
Descrizione fisica | 1 online resource (364 pages) |
Disciplina | 006.3823 |
Altri autori (Persone) |
EmmerichMichael
NaujoksBoris PurshouseRobin |
Collana | Natural Computing Series |
Soggetto topico |
Computer science
Operations research Theory of Computation Operations Research and Decision Theory |
ISBN | 3-031-25263-2 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | Chapter 1: Introduction to Many-Criteria Optimization and Decision Analysis -- Chapter 2: Key Issues in Real-World Applications of Many-Objective Optimisation and Decision Analysis -- Chapter 3: Identifying Properties of Real-World Optimisation Problems through a Questionnaire -- Chapter 4: Many-Criteria Dominance Relations -- Chapter 5: Many-Objective Quality Measures -- Chapter 6: Benchmarking -- Chapter 7: Visualisation for decision support in many-objective optimisation: state-of-the-art, guidance and future directions -- Chapter 8: Theoretical Aspects of Subset Selection in Multi-Objective Optimisation -- Chapter 9: Identifying Correlations in Understanding and Solving Multi-Objective Problems -- Chapter 10: Bayesian Optimization -- Chapter 11: A game theoretic perspective on Bayesian many-objective optimization -- Chapter 12: Heterogeneous Objectives: State-of-the-Art and Future Research -- Chapter 13: MACODA Ontology and Knowledge Management. |
Record Nr. | UNISA-996547961503316 |
Brockhoff Dimo | ||
Cham : , : Springer International Publishing : , : Imprint : Springer, , 2023 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. di Salerno | ||
|
Many-Criteria Optimization and Decision Analysis : State-of-the-Art, Present Challenges, and Future Perspectives / / edited by Dimo Brockhoff, Michael Emmerich, Boris Naujoks, Robin Purshouse |
Autore | Brockhoff Dimo |
Edizione | [1st ed. 2023.] |
Pubbl/distr/stampa | Cham : , : Springer International Publishing : , : Imprint : Springer, , 2023 |
Descrizione fisica | 1 online resource (364 pages) |
Disciplina | 006.3823 |
Altri autori (Persone) |
EmmerichMichael
NaujoksBoris PurshouseRobin |
Collana | Natural Computing Series |
Soggetto topico |
Computer science
Operations research Theory of Computation Operations Research and Decision Theory |
ISBN | 3-031-25263-2 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | Chapter 1: Introduction to Many-Criteria Optimization and Decision Analysis -- Chapter 2: Key Issues in Real-World Applications of Many-Objective Optimisation and Decision Analysis -- Chapter 3: Identifying Properties of Real-World Optimisation Problems through a Questionnaire -- Chapter 4: Many-Criteria Dominance Relations -- Chapter 5: Many-Objective Quality Measures -- Chapter 6: Benchmarking -- Chapter 7: Visualisation for decision support in many-objective optimisation: state-of-the-art, guidance and future directions -- Chapter 8: Theoretical Aspects of Subset Selection in Multi-Objective Optimisation -- Chapter 9: Identifying Correlations in Understanding and Solving Multi-Objective Problems -- Chapter 10: Bayesian Optimization -- Chapter 11: A game theoretic perspective on Bayesian many-objective optimization -- Chapter 12: Heterogeneous Objectives: State-of-the-Art and Future Research -- Chapter 13: MACODA Ontology and Knowledge Management. |
Record Nr. | UNINA-9910736005103321 |
Brockhoff Dimo | ||
Cham : , : Springer International Publishing : , : Imprint : Springer, , 2023 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Parallel Problem Solving from Nature – PPSN XVI [[electronic resource] ] : 16th International Conference, PPSN 2020, Leiden, The Netherlands, September 5-9, 2020, Proceedings, Part I / / edited by Thomas Bäck, Mike Preuss, André Deutz, Hao Wang, Carola Doerr, Michael Emmerich, Heike Trautmann |
Edizione | [1st ed. 2020.] |
Pubbl/distr/stampa | Cham : , : Springer International Publishing : , : Imprint : Springer, , 2020 |
Descrizione fisica | 1 online resource (XXIX, 735 p. 261 illus., 169 illus. in color.) |
Disciplina | 004.0151 |
Collana | Theoretical Computer Science and General Issues |
Soggetto topico |
Computer science
Artificial intelligence Computer science—Mathematics Discrete mathematics Mathematical statistics Computer networks Theory of Computation Artificial Intelligence Mathematics of Computing Discrete Mathematics in Computer Science Probability and Statistics in Computer Science Computer Communication Networks |
ISBN | 3-030-58112-8 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | Automated Algorithm Selection and Configuration -- Bayesian- and Surrogate-Assisted Optimization -- Benchmarking and Performance Measures -- Combinatorial Optimization -- Connection Between Nature-Inspired Optimization and Artificial Intelligence -- Genetic and Evolutionary Algorithms. |
Record Nr. | UNISA-996418291703316 |
Cham : , : Springer International Publishing : , : Imprint : Springer, , 2020 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. di Salerno | ||
|
Parallel Problem Solving from Nature – PPSN XVI [[electronic resource] ] : 16th International Conference, PPSN 2020, Leiden, The Netherlands, September 5-9, 2020, Proceedings, Part II / / edited by Thomas Bäck, Mike Preuss, André Deutz, Hao Wang, Carola Doerr, Michael Emmerich, Heike Trautmann |
Edizione | [1st ed. 2020.] |
Pubbl/distr/stampa | Cham : , : Springer International Publishing : , : Imprint : Springer, , 2020 |
Descrizione fisica | 1 online resource (XXIX, 717 p. 318 illus., 146 illus. in color.) |
Disciplina | 004.0151 |
Collana | Theoretical Computer Science and General Issues |
Soggetto topico |
Computer science
Artificial intelligence Computer science—Mathematics Discrete mathematics Software engineering Mathematical statistics Theory of Computation Artificial Intelligence Mathematics of Computing Discrete Mathematics in Computer Science Software Engineering Probability and Statistics in Computer Science |
ISBN | 3-030-58115-2 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | Genetic Programming -- Landscape Analysis -- Multiobjective Optimization -- Real-World Applications -- Reinforcement Learning -- Theoretical Aspects of Nature-Inspired Optimization. . |
Record Nr. | UNISA-996418292103316 |
Cham : , : Springer International Publishing : , : Imprint : Springer, , 2020 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. di Salerno | ||
|