Advances in time-domain computational electromagnetic methods / / edited by Qiang Ren, Su Yan, Atef Z. Elsherbeni |
Pubbl/distr/stampa | Piscataway, New Jersey ; ; Hoboken, New Jersey : , : IEEE Press : , : Wiley, , [2023] |
Descrizione fisica | 1 online resource (723 pages) |
Disciplina | 537 |
Collana | IEEE Press series on electromagnetic wave theory |
Soggetto topico |
Electromagnetism - Mathematical models
Time-domain analysis Electromagnetism |
ISBN |
1-119-80840-5
1-119-80838-3 |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Cover -- Title Page -- Copyright -- Contents -- About the Editors -- List of Contributors -- Preface -- Part I Time‐Domain Methods for Analyzing Nonlinear Phenomena -- Chapter 1 Integration of Nonlinear Circuit Elements into FDTD Method Formulation -- 1.1 Introduction -- 1.2 FDTD Updating Equations for Nonlinear Elements -- 1.2.1 Junction Diode -- 1.2.2 Bipolar Junction Transistors: Small‐Signal Model -- 1.2.3 Bipolar Junction Transistors: Ebers-Moll Model -- 1.2.4 Bipolar Junction Transistors: Gummel-Poon Model -- 1.2.5 Field‐Effect Transistors: Small‐Signal Modeling -- 1.2.6 Field‐Effect Transistors: Large‐Signal Modeling -- 1.3 FDTD-SPICE -- 1.4 Data‐Based Models -- 1.4.1 Linear Lumped Elements: S‐Parameter Approaches -- 1.4.2 Nonlinear Lumped Elements: X‐Parameters -- 1.5 Conclusions -- References -- Chapter 2 FDTD Method for Nonlinear Metasurface Analysis -- 2.1 Introduction to Nonlinear Metasurface -- 2.1.1 What is Nonlinear Metasurface? -- 2.1.2 Material Modeling -- 2.1.2.1 Classical Approach -- 2.1.2.2 Semi‐Classical (Semi‐Quantum) Approach -- 2.1.2.3 Full‐Quantum Approach -- 2.1.3 Computational Methods for NMS Analysis -- 2.2 Fundamentals of Classical Models -- 2.2.1 Carrier Transport Equations -- 2.2.2 Momentum Equations -- 2.2.3 Maxwell‐Hydrodynamic Model -- 2.2.4 Simplified Models at Low Frequencies -- 2.2.5 Review and Restrictions -- 2.3 FDTD Analysis -- 2.3.1 Time‐Domain Perturbation Method (TDPM) -- 2.3.2 Numerical Algorithm: FDTD‐TDPM -- 2.3.2.1 Computational Grids -- 2.3.2.2 Linear FDTD Solver -- 2.3.2.3 Extra Nonlinear Current Source -- 2.3.3 Stability Issues -- 2.3.4 Numerical Results and Validations -- 2.3.4.1 Linear Responses -- 2.3.4.2 Nonlinear Responses -- 2.4 Applications -- 2.4.1 Nonlinear Surface Susceptibility Extraction -- 2.4.2 All‐Optical Switch (AOS) -- 2.4.3 Harmonic‐Modulated NMS (HM‐NMS) -- 2.5 Summary.
References -- Chapter 3 The Finite‐Element Time‐Domain Method for Dispersive and Nonlinear Media -- 3.1 Background and Motivation -- 3.2 Dispersive and Nonlinear Media -- 3.2.1 Dispersive Material Models -- 3.2.2 Dispersive Media Modeling Techniques -- 3.2.3 Nonlinear Dielectric Models -- 3.3 Finite‐Element Time‐Domain Formulations -- 3.3.1 Vector Wave Equation Formulation -- 3.3.2 Mixed Formulation -- 3.3.3 Remarks on FETD Formulations -- 3.4 FETD for Dispersive and Nonlinear Media -- 3.4.1 Vector Wave Equation (VWE) Formulation -- 3.4.1.1 Linear Dispersive Media -- 3.4.1.2 Instantaneous Nonlinearity -- 3.4.1.3 Dispersive Nonlinearity -- 3.4.1.4 Numerical Studies -- 3.4.2 Mixed Formulation -- 3.4.2.1 Linear Dispersive Media -- 3.4.2.2 Instantaneous Nonlinearity -- 3.4.2.3 Dispersive Nonlinearity -- 3.4.2.4 Numerical Studies -- 3.4.3 Implementation Issues -- 3.4.3.1 Newton-Raphson Iteration -- 3.4.3.2 Evaluation of Elemental Matrices -- 3.4.3.3 Nonlinear Auxiliary Variable Updating -- 3.5 Stability Analysis -- 3.5.1 Numerical Stability -- 3.5.2 Linear Dispersive Media -- 3.5.3 Nonlinear Media -- 3.6 Conclusion -- References -- Part II Time‐Domain Methods for Multiphysics and Multiscale Modeling -- Chapter 4 Discontinuous Galerkin Time‐Domain Method in Electromagnetics: From Nanostructure Simulations to Multiphysics Implementations -- 4.1 Introduction to the Discontinuous Galerkin Time‐Domain Method -- 4.1.1 The DGTD Formulation for Maxwell's Equations -- 4.1.2 Boundary Conditions -- 4.1.2.1 Absorbing Boundary Conditions (ABCs) -- 4.1.2.2 Boundary Condition on Perfect Electrically Conducting (PEC) Surfaces -- 4.1.2.3 Boundary Condition on Perfect Magnetically Conducting (PMC) Surfaces -- 4.1.3 Hybridization with Time‐Domain Boundary Integral (TDBI) Method -- 4.1.4 Multi‐time Stepping Scheme of the DGTDBI -- 4.1.5 Numerical Examples for the DGTDBI. 4.1.6 The DGTD Scheme with Nodal Basis Functions -- 4.2 Application of the DGTD Method to Real Problems -- 4.2.1 Graphene‐Based Devices -- 4.2.1.1 A Resistive Boundary Condition to Represent Graphene Within the DGTD Method -- 4.2.1.2 A Resistive Boundary Condition and an Auxiliary Equation Method to Represent Magnetized Graphene Within the DGTD Method -- 4.2.2 Multiphysics Simulation of Optoelectronic Devices -- References -- Chapter 5 Adaptive Discontinuous Galerkin Time‐Domain Method for the Modeling and Simulation of Electromagnetic and Multiphysics Problems -- 5.1 Introduction -- 5.2 Nodal Discontinuous Galerkin Time‐Domain Method -- 5.2.1 High‐Order Spatial Discretization -- 5.2.1.1 Definition of Basis Functions: Modal Basis and Nodal Basis -- 5.2.1.2 Choice of Interpolating Nodes -- 5.2.1.3 Elemental Matrices in the DG Method -- 5.2.2 High‐Order Temporal Discretization -- 5.3 Modeling and Simulation of Electromagnetic-Plasma Interaction -- 5.3.1 Physical Models of EM-Plasma Interactions -- 5.3.2 Numerical Modeling of EM-Plasma Interactions -- 5.4 Dynamic Adaptation Algorithm -- 5.4.1 Dynamic h‐Adaptation -- 5.4.2 Dynamic p‐Adaptation -- 5.5 Multirate Time Integration Technique -- 5.6 Numerical Examples -- 5.6.1 Scattering from a Cone Sphere with a Slot -- 5.6.2 Wave Scattering from an Aircraft -- 5.6.3 Plasma Formation and EM Shielding -- 5.6.4 HPM Air Discharge and Formation of Plasma Filamentary Array -- 5.7 Conclusion -- References -- Chapter 6 DGTD Method for Periodic and Quasi‐Periodic Structures -- 6.1 Introduction -- 6.1.1 Background -- 6.1.2 Overview of the Sections -- 6.2 The Subdomain‐Level DGTD Method -- 6.2.1 Discretized System -- 6.2.2 Time Stepping Schemes -- 6.3 Memory‐Efficient DGTD Method for Periodic Structures -- 6.3.1 Discretized System -- 6.3.1.1 Discretized System of Periodic Structures. 6.3.1.2 Discretized System of Embedded Periodic Structures -- 6.3.2 Time Stepping Schemes -- 6.3.3 Numerical Results -- 6.3.3.1 PEC Cavity with Periodic Structures -- 6.3.3.2 Periodic Patch Antenna Arrays -- 6.4 Memory‐Efficient DGTD Method for Quasi‐Periodic Structures -- 6.4.1 Discretized System -- 6.4.1.1 Discretized System of Quasi‐Periodic Structures -- 6.4.1.2 Discretized System of Embedded Structures -- 6.4.2 Time Stepping Schemes -- 6.4.3 Numerical Results -- 6.4.3.1 PEC Cavity Filled with Quasi‐Periodic Structures -- 6.4.3.2 Patch Antenna Array with Quasi‐Periodic Structures -- 6.5 Conclusions -- References -- Part III Time‐Domain Integral Equation Methods for Scattering Analysis -- Chapter 7 Explicit Marching‐on‐in‐time Solvers for Second‐kind Time Domain Integral Equations -- 7.1 Introduction -- 7.2 TD‐MFIE and Its Discretization -- 7.2.1 Discretization Using RWG Basis Functions -- 7.2.2 Discretization Using the Nyström Method -- 7.3 TD‐MFVIE and Its Discretization Using FLC Basis Functions -- 7.4 Predictor-Corrector Scheme -- 7.5 Implicit MOT Scheme -- 7.6 Comparison of Implicit and Explicit Solutions -- 7.7 Computational Complexity Analysis -- 7.8 Remarks -- 7.9 Numerical Results -- 7.9.1 TD‐MFIE Discretized Using RWG Basis Functions -- 7.9.2 TD‐MFIE Discretized Using the Nyström Method -- 7.9.3 TD‐MFVIE Discretized Using FLC Basis Functions -- 7.10 Conclusion -- References -- Chapter 8 Convolution Quadrature Time Domain Integral Equation Methods for Electromagnetic Scattering -- 8.1 Introduction -- 8.2 Background and Notations -- 8.2.1 Time Domain Integral Equations -- 8.3 Solution Using Convolution Quadrature -- 8.3.1 Laplace Transform -- 8.3.2 Laplace Domain Integral Equations -- 8.3.3 Z‐Transform -- 8.3.4 Runge-Kutta Methods -- 8.3.5 Solution of a Differential Equation Using Runge-Kutta Methods. 8.3.6 Convolution Quadrature Using Runge-Kutta Methods -- 8.3.7 Discretization of Boundary Integral Equations -- 8.3.7.1 Space Discretization -- 8.3.7.2 Time Discretization -- 8.3.8 Computation of the Interaction Matrices -- 8.3.9 Marching‐on‐in‐Time (MOT) -- 8.3.10 Examples -- 8.3.10.1 Differentiated EFIE -- 8.3.10.2 MFIE -- 8.3.10.3 Differentiated MFIE -- 8.3.10.4 Differentiated CFIE -- 8.4 Implementation Details -- 8.4.1 Building a Time Domain Solver from a Frequency Domain Code: Baseline Implementation of the MOT -- 8.4.2 Choice of the Simulation Parameters -- 8.4.2.1 Choice of the RK Method -- 8.4.2.2 Choice of the Time Step and the Discretization Density -- 8.4.2.3 Choice of the Inverse Z‐Transform Parameters -- 8.5 Acceleration, Preconditioning, and Stabilizations -- 8.5.1 Computational Complexity and Fast Solver Acceleration -- 8.5.1.1 Complexity Analysis of a Naive Implementation -- 8.5.1.2 Acceleration with Fast Solvers -- 8.5.2 Ill‐Conditioning and Instabilities -- 8.5.2.1 Interior Resonances and CFIE -- 8.5.2.2 DC Instability -- 8.5.2.3 Large Time Step Breakdown -- 8.5.2.4 Treatment of the LF Breakdown and DC Instability -- 8.6 Details of the Numerical Examples Used in the Chapter -- 8.7 Conclusions -- References -- Chapter 9 Solving Electromagnetic Scattering Problems Using Impulse Responses -- 9.1 Introduction -- 9.2 Impulse Responses -- 9.3 Behavior at the Interior Resonance Frequencies -- 9.4 Impact on MOT Late Time Instability -- 9.5 Analytical Expressions for the Retarded‐Time Potentials -- 9.6 Numerical Verification of Stability Properties -- 9.7 Effect of Impulse Response Truncation -- 9.8 Domain Decomposition Method Based on Impulse Responses -- 9.8.1 TD‐GTM Model -- 9.8.2 TD‐GSIE -- 9.8.3 Numerical Results -- 9.9 Conclusions -- References -- Part IV Applications of Deep Learning in Time‐Domain Methods. Chapter 10 Time‐Domain Electromagnetic Forward and Inverse Modeling Using a Differentiable Programming Platform. |
Record Nr. | UNINA-9910830503903321 |
Piscataway, New Jersey ; ; Hoboken, New Jersey : , : IEEE Press : , : Wiley, , [2023] | ||
![]() | ||
Lo trovi qui: Univ. Federico II | ||
|
Analysis and design of transmitarray antennas / / Ahmed H. Abdelrahman, Fan Yang, Atef Z. Elsherbeni, Payam Nayeri |
Autore | Abdelrahman Ahmed H. |
Pubbl/distr/stampa | [San Rafael, California] : , : Morgan & Claypool, , 2017 |
Descrizione fisica | 1 online resource (177 pages) : color illustrations |
Disciplina | 621.3824 |
Collana | Synthesis lectures on antennas |
Soggetto topico |
Antenna arrays
Transmitting antennas |
Soggetto non controllato |
transmitarray antennas
frequency selective surfaces multilayer aperture antennas high gain antennas wideband transmitarray antennas multibeam transmitarray antennas |
ISBN | 1-62705-706-4 |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
1. Introduction -- 1.1 Transmitarray antenna concept -- 1.2 Comparison with some related antenna technologies -- 1.3 Transmitarray design approaches -- 1.3.1 Multi-layer frequency selective surfaces (M-FSS) -- 1.3.2 Receiver-transmitter design -- 1.3.3 Metamaterial/transformation approach -- 1.4 Overview of research topics --
2. Space-fed array design method -- 2.1 Phase distribution on transmitarray aperture -- 2.2 Unit-cell element analysis -- 2.3 Radiation analysis using the array theory -- 2.4 Directivity calculations -- 2.4.1 Method 1: numerical integration -- 2.4.2 Method 2: utilization of Bessel function -- 2.4.3 Method 3: illumination efficiency -- 2.4.4 Comparison between the three methods -- 2.4.5 Directivity bandwidth -- 2.5 Antenna gain -- 2.5.1 Spillover efficiency -- 2.5.2 Element losses -- 2.6 Phase error analysis -- 2.6.1 Design errors -- 2.6.2 Approximations in unit-cell analysis -- 2.6.3 Manufacturing errors -- 3. Analysis of multi-layer transmitarray antenna -- 3.1 Single-layer FSS analysis -- 3.1.1 Theoretical analysis of single-layer FSS -- 3.1.2 Numerical demonstration of single-layer FSS -- 3.1.3 Single-layer of double square loop elements -- 3.1.4 Single conductor with a substrate layer -- 3.2 Double-layer FSS analysis -- 3.2.1 Theoretical analysis of double-layer FSS -- 3.2.2 Numerical demonstration of double-layer FSS -- 3.3 Multi-layer FSS analysis -- 3.3.1 Analytical analysis of triple-layer FSS -- 3.3.2 Numerical demonstration of triple-layer FSS -- 3.3.3 Quad-layer FSS -- 4. A quad-layer transmitarray antenna using slot-type elements -- 4.1 Cross-slot transmitarray antenna design -- 4.1.1 Cross-slot element design -- 4.1.2 Transmitarray design and measurements -- 4.2 Discussion on oblique incidence and feed polarization effects -- 4.2.1 Element performance under oblique incidence -- 4.2.2 Aperture distribution and radiation pattern -- 5. Design of triple-layer transmitarray antennas -- 5.1 Identical triple-layer transmitarray antenna -- 5.1.1 Spiral dipole element design -- 5.1.2 Transmitarray design -- 5.1.3 Experiment and discussion -- 5.2 Non-identical triple-layer transmitarray antenna -- 5.2.1 Non-identical double-layer FSS analysis -- 5.2.2 Non-identical triple-layer FSS analysis -- 5.3 Double-layer unit-cells -- 6. Wideband transmitarray antennas -- 6.1 Bandwidth analysis of a transmitarray using quad-layer double square loop elements -- 6.1.1 Unit-cell property -- 6.1.2 Bandwidth performance of transmitarray -- 6.2 Bandwidth performance with different reference phases at the aperture center -- 6.3 Proper selection of element phase range for improvement of transmitarray bandwidth -- 6.4 Comparison between different element shapes -- 6.5 Prototype fabrication and measurements -- 7. Single-feed multi-beam transmitarrays -- 7.1 Design methodologies for single-feed multi-beam transmitarray antennas -- 7.2 Design of Ku-band single-feed quad-beam transmitarray antennas -- 7.3 Prototype fabrication and measurements -- 7.4 Transmitarray approximation and performance discussions -- 7.4.1 Oblique incidence effect of the unit-cell element -- 7.4.2 Variations in dimensions of neighboring elements -- 7.4.3 Phase error and magnitude loss effect on the radiation patterns -- 8. Conclusions -- 8.1 Contributions of this book -- 8.2 Future work -- A. S-matrix of cascaded layers -- Bibliography -- Authors' biographies. |
Record Nr. | UNINA-9910160669903321 |
Abdelrahman Ahmed H.
![]() |
||
[San Rafael, California] : , : Morgan & Claypool, , 2017 | ||
![]() | ||
Lo trovi qui: Univ. Federico II | ||
|
Reflectarray antennas : theory, designs and applications / / Payam Nayeri, Fan Yang, Atef Z. Elsherbeni |
Autore | Nayeri Payam |
Edizione | [1st edition] |
Pubbl/distr/stampa | Hoboken, New Jersey : , : Wiley : , : IEEE Press, , 2018 |
Descrizione fisica | 1 online resource (116 pages) : illustrations (some color), tables |
Disciplina | 621.384135 |
Soggetto topico | Antennas, Reflectarray |
ISBN |
1-118-84674-5
1-118-84675-3 1-118-84672-9 |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | Introduction to reflectarray antennas -- Analysis and design of reflectarray elements -- System design and aperture efficiency analysis -- Radiation analysis techniques -- Bandwidth of reflectarray antennas -- Reflectarray design examples -- Broadband and multi-band reflectarray antennas -- Terahertz, infrared, and optical reflectarray antennas -- Multi-beam and shaped-beam reflectarray antennas -- Beam-scanning reflectarray antennas -- Reflectarray engineering and emerging applications. |
Record Nr. | UNINA-9910270933303321 |
Nayeri Payam
![]() |
||
Hoboken, New Jersey : , : Wiley : , : IEEE Press, , 2018 | ||
![]() | ||
Lo trovi qui: Univ. Federico II | ||
|
Reflectarray antennas : theory, designs and applications / / Payam Nayeri, Fan Yang, Atef Z. Elsherbeni |
Autore | Nayeri Payam |
Edizione | [1st edition] |
Pubbl/distr/stampa | Hoboken, New Jersey : , : Wiley : , : IEEE Press, , 2018 |
Descrizione fisica | 1 online resource (116 pages) : illustrations (some color), tables |
Disciplina | 621.384135 |
Soggetto topico | Antennas, Reflectarray |
ISBN |
1-118-84674-5
1-118-84675-3 1-118-84672-9 |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | Introduction to reflectarray antennas -- Analysis and design of reflectarray elements -- System design and aperture efficiency analysis -- Radiation analysis techniques -- Bandwidth of reflectarray antennas -- Reflectarray design examples -- Broadband and multi-band reflectarray antennas -- Terahertz, infrared, and optical reflectarray antennas -- Multi-beam and shaped-beam reflectarray antennas -- Beam-scanning reflectarray antennas -- Reflectarray engineering and emerging applications. |
Record Nr. | UNINA-9910819408803321 |
Nayeri Payam
![]() |
||
Hoboken, New Jersey : , : Wiley : , : IEEE Press, , 2018 | ||
![]() | ||
Lo trovi qui: Univ. Federico II | ||
|