top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Advances in time-domain computational electromagnetic methods / / edited by Qiang Ren, Su Yan, Atef Z. Elsherbeni
Advances in time-domain computational electromagnetic methods / / edited by Qiang Ren, Su Yan, Atef Z. Elsherbeni
Pubbl/distr/stampa Piscataway, New Jersey ; ; Hoboken, New Jersey : , : IEEE Press : , : Wiley, , [2023]
Descrizione fisica 1 online resource (723 pages)
Disciplina 537
Collana IEEE Press series on electromagnetic wave theory
Soggetto topico Electromagnetism - Mathematical models
Time-domain analysis
Electromagnetism
ISBN 1-119-80840-5
1-119-80838-3
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Cover -- Title Page -- Copyright -- Contents -- About the Editors -- List of Contributors -- Preface -- Part I Time‐Domain Methods for Analyzing Nonlinear Phenomena -- Chapter 1 Integration of Nonlinear Circuit Elements into FDTD Method Formulation -- 1.1 Introduction -- 1.2 FDTD Updating Equations for Nonlinear Elements -- 1.2.1 Junction Diode -- 1.2.2 Bipolar Junction Transistors: Small‐Signal Model -- 1.2.3 Bipolar Junction Transistors: Ebers-Moll Model -- 1.2.4 Bipolar Junction Transistors: Gummel-Poon Model -- 1.2.5 Field‐Effect Transistors: Small‐Signal Modeling -- 1.2.6 Field‐Effect Transistors: Large‐Signal Modeling -- 1.3 FDTD-SPICE -- 1.4 Data‐Based Models -- 1.4.1 Linear Lumped Elements: S‐Parameter Approaches -- 1.4.2 Nonlinear Lumped Elements: X‐Parameters -- 1.5 Conclusions -- References -- Chapter 2 FDTD Method for Nonlinear Metasurface Analysis -- 2.1 Introduction to Nonlinear Metasurface -- 2.1.1 What is Nonlinear Metasurface? -- 2.1.2 Material Modeling -- 2.1.2.1 Classical Approach -- 2.1.2.2 Semi‐Classical (Semi‐Quantum) Approach -- 2.1.2.3 Full‐Quantum Approach -- 2.1.3 Computational Methods for NMS Analysis -- 2.2 Fundamentals of Classical Models -- 2.2.1 Carrier Transport Equations -- 2.2.2 Momentum Equations -- 2.2.3 Maxwell‐Hydrodynamic Model -- 2.2.4 Simplified Models at Low Frequencies -- 2.2.5 Review and Restrictions -- 2.3 FDTD Analysis -- 2.3.1 Time‐Domain Perturbation Method (TDPM) -- 2.3.2 Numerical Algorithm: FDTD‐TDPM -- 2.3.2.1 Computational Grids -- 2.3.2.2 Linear FDTD Solver -- 2.3.2.3 Extra Nonlinear Current Source -- 2.3.3 Stability Issues -- 2.3.4 Numerical Results and Validations -- 2.3.4.1 Linear Responses -- 2.3.4.2 Nonlinear Responses -- 2.4 Applications -- 2.4.1 Nonlinear Surface Susceptibility Extraction -- 2.4.2 All‐Optical Switch (AOS) -- 2.4.3 Harmonic‐Modulated NMS (HM‐NMS) -- 2.5 Summary.
References -- Chapter 3 The Finite‐Element Time‐Domain Method for Dispersive and Nonlinear Media -- 3.1 Background and Motivation -- 3.2 Dispersive and Nonlinear Media -- 3.2.1 Dispersive Material Models -- 3.2.2 Dispersive Media Modeling Techniques -- 3.2.3 Nonlinear Dielectric Models -- 3.3 Finite‐Element Time‐Domain Formulations -- 3.3.1 Vector Wave Equation Formulation -- 3.3.2 Mixed Formulation -- 3.3.3 Remarks on FETD Formulations -- 3.4 FETD for Dispersive and Nonlinear Media -- 3.4.1 Vector Wave Equation (VWE) Formulation -- 3.4.1.1 Linear Dispersive Media -- 3.4.1.2 Instantaneous Nonlinearity -- 3.4.1.3 Dispersive Nonlinearity -- 3.4.1.4 Numerical Studies -- 3.4.2 Mixed Formulation -- 3.4.2.1 Linear Dispersive Media -- 3.4.2.2 Instantaneous Nonlinearity -- 3.4.2.3 Dispersive Nonlinearity -- 3.4.2.4 Numerical Studies -- 3.4.3 Implementation Issues -- 3.4.3.1 Newton-Raphson Iteration -- 3.4.3.2 Evaluation of Elemental Matrices -- 3.4.3.3 Nonlinear Auxiliary Variable Updating -- 3.5 Stability Analysis -- 3.5.1 Numerical Stability -- 3.5.2 Linear Dispersive Media -- 3.5.3 Nonlinear Media -- 3.6 Conclusion -- References -- Part II Time‐Domain Methods for Multiphysics and Multiscale Modeling -- Chapter 4 Discontinuous Galerkin Time‐Domain Method in Electromagnetics: From Nanostructure Simulations to Multiphysics Implementations -- 4.1 Introduction to the Discontinuous Galerkin Time‐Domain Method -- 4.1.1 The DGTD Formulation for Maxwell's Equations -- 4.1.2 Boundary Conditions -- 4.1.2.1 Absorbing Boundary Conditions (ABCs) -- 4.1.2.2 Boundary Condition on Perfect Electrically Conducting (PEC) Surfaces -- 4.1.2.3 Boundary Condition on Perfect Magnetically Conducting (PMC) Surfaces -- 4.1.3 Hybridization with Time‐Domain Boundary Integral (TDBI) Method -- 4.1.4 Multi‐time Stepping Scheme of the DGTDBI -- 4.1.5 Numerical Examples for the DGTDBI.
4.1.6 The DGTD Scheme with Nodal Basis Functions -- 4.2 Application of the DGTD Method to Real Problems -- 4.2.1 Graphene‐Based Devices -- 4.2.1.1 A Resistive Boundary Condition to Represent Graphene Within the DGTD Method -- 4.2.1.2 A Resistive Boundary Condition and an Auxiliary Equation Method to Represent Magnetized Graphene Within the DGTD Method -- 4.2.2 Multiphysics Simulation of Optoelectronic Devices -- References -- Chapter 5 Adaptive Discontinuous Galerkin Time‐Domain Method for the Modeling and Simulation of Electromagnetic and Multiphysics Problems -- 5.1 Introduction -- 5.2 Nodal Discontinuous Galerkin Time‐Domain Method -- 5.2.1 High‐Order Spatial Discretization -- 5.2.1.1 Definition of Basis Functions: Modal Basis and Nodal Basis -- 5.2.1.2 Choice of Interpolating Nodes -- 5.2.1.3 Elemental Matrices in the DG Method -- 5.2.2 High‐Order Temporal Discretization -- 5.3 Modeling and Simulation of Electromagnetic-Plasma Interaction -- 5.3.1 Physical Models of EM-Plasma Interactions -- 5.3.2 Numerical Modeling of EM-Plasma Interactions -- 5.4 Dynamic Adaptation Algorithm -- 5.4.1 Dynamic h‐Adaptation -- 5.4.2 Dynamic p‐Adaptation -- 5.5 Multirate Time Integration Technique -- 5.6 Numerical Examples -- 5.6.1 Scattering from a Cone Sphere with a Slot -- 5.6.2 Wave Scattering from an Aircraft -- 5.6.3 Plasma Formation and EM Shielding -- 5.6.4 HPM Air Discharge and Formation of Plasma Filamentary Array -- 5.7 Conclusion -- References -- Chapter 6 DGTD Method for Periodic and Quasi‐Periodic Structures -- 6.1 Introduction -- 6.1.1 Background -- 6.1.2 Overview of the Sections -- 6.2 The Subdomain‐Level DGTD Method -- 6.2.1 Discretized System -- 6.2.2 Time Stepping Schemes -- 6.3 Memory‐Efficient DGTD Method for Periodic Structures -- 6.3.1 Discretized System -- 6.3.1.1 Discretized System of Periodic Structures.
6.3.1.2 Discretized System of Embedded Periodic Structures -- 6.3.2 Time Stepping Schemes -- 6.3.3 Numerical Results -- 6.3.3.1 PEC Cavity with Periodic Structures -- 6.3.3.2 Periodic Patch Antenna Arrays -- 6.4 Memory‐Efficient DGTD Method for Quasi‐Periodic Structures -- 6.4.1 Discretized System -- 6.4.1.1 Discretized System of Quasi‐Periodic Structures -- 6.4.1.2 Discretized System of Embedded Structures -- 6.4.2 Time Stepping Schemes -- 6.4.3 Numerical Results -- 6.4.3.1 PEC Cavity Filled with Quasi‐Periodic Structures -- 6.4.3.2 Patch Antenna Array with Quasi‐Periodic Structures -- 6.5 Conclusions -- References -- Part III Time‐Domain Integral Equation Methods for Scattering Analysis -- Chapter 7 Explicit Marching‐on‐in‐time Solvers for Second‐kind Time Domain Integral Equations -- 7.1 Introduction -- 7.2 TD‐MFIE and Its Discretization -- 7.2.1 Discretization Using RWG Basis Functions -- 7.2.2 Discretization Using the Nyström Method -- 7.3 TD‐MFVIE and Its Discretization Using FLC Basis Functions -- 7.4 Predictor-Corrector Scheme -- 7.5 Implicit MOT Scheme -- 7.6 Comparison of Implicit and Explicit Solutions -- 7.7 Computational Complexity Analysis -- 7.8 Remarks -- 7.9 Numerical Results -- 7.9.1 TD‐MFIE Discretized Using RWG Basis Functions -- 7.9.2 TD‐MFIE Discretized Using the Nyström Method -- 7.9.3 TD‐MFVIE Discretized Using FLC Basis Functions -- 7.10 Conclusion -- References -- Chapter 8 Convolution Quadrature Time Domain Integral Equation Methods for Electromagnetic Scattering -- 8.1 Introduction -- 8.2 Background and Notations -- 8.2.1 Time Domain Integral Equations -- 8.3 Solution Using Convolution Quadrature -- 8.3.1 Laplace Transform -- 8.3.2 Laplace Domain Integral Equations -- 8.3.3 Z‐Transform -- 8.3.4 Runge-Kutta Methods -- 8.3.5 Solution of a Differential Equation Using Runge-Kutta Methods.
8.3.6 Convolution Quadrature Using Runge-Kutta Methods -- 8.3.7 Discretization of Boundary Integral Equations -- 8.3.7.1 Space Discretization -- 8.3.7.2 Time Discretization -- 8.3.8 Computation of the Interaction Matrices -- 8.3.9 Marching‐on‐in‐Time (MOT) -- 8.3.10 Examples -- 8.3.10.1 Differentiated EFIE -- 8.3.10.2 MFIE -- 8.3.10.3 Differentiated MFIE -- 8.3.10.4 Differentiated CFIE -- 8.4 Implementation Details -- 8.4.1 Building a Time Domain Solver from a Frequency Domain Code: Baseline Implementation of the MOT -- 8.4.2 Choice of the Simulation Parameters -- 8.4.2.1 Choice of the RK Method -- 8.4.2.2 Choice of the Time Step and the Discretization Density -- 8.4.2.3 Choice of the Inverse Z‐Transform Parameters -- 8.5 Acceleration, Preconditioning, and Stabilizations -- 8.5.1 Computational Complexity and Fast Solver Acceleration -- 8.5.1.1 Complexity Analysis of a Naive Implementation -- 8.5.1.2 Acceleration with Fast Solvers -- 8.5.2 Ill‐Conditioning and Instabilities -- 8.5.2.1 Interior Resonances and CFIE -- 8.5.2.2 DC Instability -- 8.5.2.3 Large Time Step Breakdown -- 8.5.2.4 Treatment of the LF Breakdown and DC Instability -- 8.6 Details of the Numerical Examples Used in the Chapter -- 8.7 Conclusions -- References -- Chapter 9 Solving Electromagnetic Scattering Problems Using Impulse Responses -- 9.1 Introduction -- 9.2 Impulse Responses -- 9.3 Behavior at the Interior Resonance Frequencies -- 9.4 Impact on MOT Late Time Instability -- 9.5 Analytical Expressions for the Retarded‐Time Potentials -- 9.6 Numerical Verification of Stability Properties -- 9.7 Effect of Impulse Response Truncation -- 9.8 Domain Decomposition Method Based on Impulse Responses -- 9.8.1 TD‐GTM Model -- 9.8.2 TD‐GSIE -- 9.8.3 Numerical Results -- 9.9 Conclusions -- References -- Part IV Applications of Deep Learning in Time‐Domain Methods.
Chapter 10 Time‐Domain Electromagnetic Forward and Inverse Modeling Using a Differentiable Programming Platform.
Record Nr. UNINA-9910830503903321
Piscataway, New Jersey ; ; Hoboken, New Jersey : , : IEEE Press : , : Wiley, , [2023]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Analysis and design of transmitarray antennas / / Ahmed H. Abdelrahman, Fan Yang, Atef Z. Elsherbeni, Payam Nayeri
Analysis and design of transmitarray antennas / / Ahmed H. Abdelrahman, Fan Yang, Atef Z. Elsherbeni, Payam Nayeri
Autore Abdelrahman Ahmed H.
Pubbl/distr/stampa [San Rafael, California] : , : Morgan & Claypool, , 2017
Descrizione fisica 1 online resource (177 pages) : color illustrations
Disciplina 621.3824
Collana Synthesis lectures on antennas
Soggetto topico Antenna arrays
Transmitting antennas
Soggetto non controllato transmitarray antennas
frequency selective surfaces
multilayer aperture antennas
high gain antennas
wideband transmitarray antennas
multibeam transmitarray antennas
ISBN 1-62705-706-4
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto 1. Introduction -- 1.1 Transmitarray antenna concept -- 1.2 Comparison with some related antenna technologies -- 1.3 Transmitarray design approaches -- 1.3.1 Multi-layer frequency selective surfaces (M-FSS) -- 1.3.2 Receiver-transmitter design -- 1.3.3 Metamaterial/transformation approach -- 1.4 Overview of research topics --
2. Space-fed array design method -- 2.1 Phase distribution on transmitarray aperture -- 2.2 Unit-cell element analysis -- 2.3 Radiation analysis using the array theory -- 2.4 Directivity calculations -- 2.4.1 Method 1: numerical integration -- 2.4.2 Method 2: utilization of Bessel function -- 2.4.3 Method 3: illumination efficiency -- 2.4.4 Comparison between the three methods -- 2.4.5 Directivity bandwidth -- 2.5 Antenna gain -- 2.5.1 Spillover efficiency -- 2.5.2 Element losses -- 2.6 Phase error analysis -- 2.6.1 Design errors -- 2.6.2 Approximations in unit-cell analysis -- 2.6.3 Manufacturing errors --
3. Analysis of multi-layer transmitarray antenna -- 3.1 Single-layer FSS analysis -- 3.1.1 Theoretical analysis of single-layer FSS -- 3.1.2 Numerical demonstration of single-layer FSS -- 3.1.3 Single-layer of double square loop elements -- 3.1.4 Single conductor with a substrate layer -- 3.2 Double-layer FSS analysis -- 3.2.1 Theoretical analysis of double-layer FSS -- 3.2.2 Numerical demonstration of double-layer FSS -- 3.3 Multi-layer FSS analysis -- 3.3.1 Analytical analysis of triple-layer FSS -- 3.3.2 Numerical demonstration of triple-layer FSS -- 3.3.3 Quad-layer FSS --
4. A quad-layer transmitarray antenna using slot-type elements -- 4.1 Cross-slot transmitarray antenna design -- 4.1.1 Cross-slot element design -- 4.1.2 Transmitarray design and measurements -- 4.2 Discussion on oblique incidence and feed polarization effects -- 4.2.1 Element performance under oblique incidence -- 4.2.2 Aperture distribution and radiation pattern --
5. Design of triple-layer transmitarray antennas -- 5.1 Identical triple-layer transmitarray antenna -- 5.1.1 Spiral dipole element design -- 5.1.2 Transmitarray design -- 5.1.3 Experiment and discussion -- 5.2 Non-identical triple-layer transmitarray antenna -- 5.2.1 Non-identical double-layer FSS analysis -- 5.2.2 Non-identical triple-layer FSS analysis -- 5.3 Double-layer unit-cells --
6. Wideband transmitarray antennas -- 6.1 Bandwidth analysis of a transmitarray using quad-layer double square loop elements -- 6.1.1 Unit-cell property -- 6.1.2 Bandwidth performance of transmitarray -- 6.2 Bandwidth performance with different reference phases at the aperture center -- 6.3 Proper selection of element phase range for improvement of transmitarray bandwidth -- 6.4 Comparison between different element shapes -- 6.5 Prototype fabrication and measurements --
7. Single-feed multi-beam transmitarrays -- 7.1 Design methodologies for single-feed multi-beam transmitarray antennas -- 7.2 Design of Ku-band single-feed quad-beam transmitarray antennas -- 7.3 Prototype fabrication and measurements -- 7.4 Transmitarray approximation and performance discussions -- 7.4.1 Oblique incidence effect of the unit-cell element -- 7.4.2 Variations in dimensions of neighboring elements -- 7.4.3 Phase error and magnitude loss effect on the radiation patterns --
8. Conclusions -- 8.1 Contributions of this book -- 8.2 Future work -- A. S-matrix of cascaded layers -- Bibliography -- Authors' biographies.
Record Nr. UNINA-9910160669903321
Abdelrahman Ahmed H.  
[San Rafael, California] : , : Morgan & Claypool, , 2017
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Reflectarray antennas : theory, designs and applications / / Payam Nayeri, Fan Yang, Atef Z. Elsherbeni
Reflectarray antennas : theory, designs and applications / / Payam Nayeri, Fan Yang, Atef Z. Elsherbeni
Autore Nayeri Payam
Edizione [1st edition]
Pubbl/distr/stampa Hoboken, New Jersey : , : Wiley : , : IEEE Press, , 2018
Descrizione fisica 1 online resource (116 pages) : illustrations (some color), tables
Disciplina 621.384135
Soggetto topico Antennas, Reflectarray
ISBN 1-118-84674-5
1-118-84675-3
1-118-84672-9
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Introduction to reflectarray antennas -- Analysis and design of reflectarray elements -- System design and aperture efficiency analysis -- Radiation analysis techniques -- Bandwidth of reflectarray antennas -- Reflectarray design examples -- Broadband and multi-band reflectarray antennas -- Terahertz, infrared, and optical reflectarray antennas -- Multi-beam and shaped-beam reflectarray antennas -- Beam-scanning reflectarray antennas -- Reflectarray engineering and emerging applications.
Record Nr. UNINA-9910270933303321
Nayeri Payam  
Hoboken, New Jersey : , : Wiley : , : IEEE Press, , 2018
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Reflectarray antennas : theory, designs and applications / / Payam Nayeri, Fan Yang, Atef Z. Elsherbeni
Reflectarray antennas : theory, designs and applications / / Payam Nayeri, Fan Yang, Atef Z. Elsherbeni
Autore Nayeri Payam
Edizione [1st edition]
Pubbl/distr/stampa Hoboken, New Jersey : , : Wiley : , : IEEE Press, , 2018
Descrizione fisica 1 online resource (116 pages) : illustrations (some color), tables
Disciplina 621.384135
Soggetto topico Antennas, Reflectarray
ISBN 1-118-84674-5
1-118-84675-3
1-118-84672-9
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Introduction to reflectarray antennas -- Analysis and design of reflectarray elements -- System design and aperture efficiency analysis -- Radiation analysis techniques -- Bandwidth of reflectarray antennas -- Reflectarray design examples -- Broadband and multi-band reflectarray antennas -- Terahertz, infrared, and optical reflectarray antennas -- Multi-beam and shaped-beam reflectarray antennas -- Beam-scanning reflectarray antennas -- Reflectarray engineering and emerging applications.
Record Nr. UNINA-9910819408803321
Nayeri Payam  
Hoboken, New Jersey : , : Wiley : , : IEEE Press, , 2018
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui