top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Evolutionary and Memetic Computing for Project Portfolio Selection and Scheduling
Evolutionary and Memetic Computing for Project Portfolio Selection and Scheduling
Autore Harrison Kyle Robert
Pubbl/distr/stampa Cham : , : Springer International Publishing AG, , 2022
Descrizione fisica 1 online resource (218 pages)
Altri autori (Persone) ElsayedSaber
GaranovichIvan Leonidovich
WeirTerence
BoswellSharon G
SarkerRuhul Amin
Collana Adaptation, Learning, and Optimization Ser.
Soggetto genere / forma Electronic books.
ISBN 9783030883157
9783030883140
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Intro -- Preface -- Contents -- Evolutionary and Memetic Computing for Project Portfolio Selection and Scheduling: An Introduction -- 1 Introduction -- 2 Problem Formulation -- 3 Solution Methodologies -- 3.1 Mathematical Optimization -- 3.2 Evolutionary Computation -- 3.3 Memetic Computing -- 4 Summary of Chapters -- 5 Guide for Readers -- References -- Evolutionary Approaches for Project Portfolio Optimization: An Overview -- 1 Introduction -- 2 Problem Description -- 2.1 Public and Social Projects -- 2.2 Software/IT Projects -- 2.3 R& -- D and Production Projects -- 2.4 Construction and Infrastructure Projects -- 2.5 Investment Projects -- 2.6 Defense Projects -- 2.7 Summary of Problem Descriptions -- 3 Problem Formulation -- 3.1 Basic Problem Formulation -- 3.2 Public and Social Projects -- 3.3 Software/IT Projects -- 3.4 R& -- D and Production Projects -- 3.5 Construction and Infrastructure Projects -- 3.6 Investment Projects -- 3.7 Defense Projects -- 3.8 Summary of Formulations -- 4 Solution Approaches -- 4.1 Public and Social Projects -- 4.2 Software/IT Projects -- 4.3 R& -- D and Production Projects -- 4.4 Construction and Infrastructure Projects -- 4.5 Investment Projects -- 4.6 Defense Projects -- 4.7 Summary of Solution Approaches -- 5 Summary -- References -- An Introduction to Evolutionary and Memetic Algorithms for Parameter Optimization -- 1 Introduction -- 2 Comparison Between EAs and Classical Optimization Methods -- 2.1 Robustness -- 2.2 Efficiency -- 3 Building Blocks of EAs -- 4 Genetic Algorithm -- 4.1 Initialization -- 4.2 Selection -- 4.3 Crossover -- 4.4 Mutation -- 4.5 Population Update -- 4.6 Stopping Criteria -- 5 Evolution Strategies -- 5.1 Selection -- 5.2 Recombination -- 5.3 Mutation -- 5.4 Adjusting the Mutation Profile -- 6 Evolutionary Programming -- 7 Differential Evolution -- 7.1 Mutation.
7.2 Crossover -- 7.3 Selection -- 7.4 Recent Variants -- 8 Other Relevant Methods -- 9 Memetic Algorithms -- 10 Summary and Conclusions -- References -- An Overall Characterization of the Project Portfolio Optimization Problem and an Approach Based on Evolutionary Algorithms to Address It -- 1 Introduction -- 2 A Review of the Project Portfolio Selection Process -- 2.1 Phases in the Project Portfolio Selection Process -- 2.2 Characterizing a Plausible Project Portfolio Selection Approach -- 3 Problem Statement -- 3.1 Problem Description -- 3.2 An Illustrative Example -- 3.3 Problem Formalization -- 4 An Overall Approach to Project Portfolio Selection -- 4.1 Framework of the Approach -- 4.2 Coping with Imperfect Information on the Criteria Impacts -- 4.3 Representing Preferences -- 4.4 Using Evolutionary Algorithms to Optimize Portfolios -- 5 Conclusions and Future Work -- References -- A New Model for the Project Portfolio Selection and Scheduling Problem with Defence Capability Options -- 1 Introduction -- 2 Background -- 2.1 The Knapsack Problem -- 2.2 Evolutionary Meta-Heuristic Approaches -- 2.3 Differential Evolution -- 3 Problem Formulation -- 3.1 Analysis of Problem Formulation -- 3.2 NP-Hardness -- 3.3 Sample Problem Data -- 3.4 Similarity to Existing Problems -- 4 Heuristic Solution Approach -- 5 Experimental Design -- 5.1 Synthetic Problem Instance Generation -- 5.2 Problem Instances -- 5.3 Algorithmic Control Parameters -- 5.4 Statistical Analysis -- 6 Results -- 6.1 Validating the Solution Approaches -- 6.2 Effect of Seeding -- 6.3 Main Results -- 6.4 Summary -- 7 Conclusions and Future Work -- References -- Analysis of New Approaches Used in Portfolio Optimization: A Systematic Literature Review -- 1 Introduction -- 2 Research Method -- 2.1 Research Questions -- 2.2 Search Sources -- 2.3 Inclusion Criteria and Exclusion Criteria.
2.4 Data Extraction -- 2.5 Data Analysis -- 2.6 Deviations in the Protocol -- 3 Results -- 3.1 Journal Impact Factor -- 3.2 Classification of Methods -- 4 Discussion -- 4.1 Which Key Methods, Tools, or Optimization Techniques Are Used in the Portfolio Optimization Problem? -- 4.2 Which Realistic Constraints Are Used? -- 4.3 What Type of Analysis Is Done Regarding the Stock: Fundamental, Technical, or Mixed (Fundamental and Technical)? -- 4.4 Which Software/Programming Languages Are Used? -- 4.5 Recent Researches -- 5 Conclusions -- 6 Research Gaps -- References -- A Temporal Knapsack Approach to Defence Portfolio Selection -- 1 Introduction -- 2 Project and Portfolio Selection in DoD -- 3 Problem Formulation -- 3.1 Inherent Solution Challenges -- 4 Implementation in Microsoft Excel® -- 5 Performance and Budget-Value Trade-Offs -- 5.1 Relaxation -- 5.2 Value-Slack Trade-Offs and the Issue of Sensitivity -- 6 Discussion and Future Work -- References -- A Decision Support System for Planning Portfolios of Supply Chain Improvement Projects in the Semiconductor Industry -- 1 Introduction -- 2 Literature -- 3 Decision Making Framework and Integer Programming Model -- 4 Decision Support System -- 5 Case Study -- 6 Conclusions and Future Research -- References -- Index.
Record Nr. UNINA-9910508437403321
Harrison Kyle Robert  
Cham : , : Springer International Publishing AG, , 2022
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Intelligent and Evolutionary Systems : The 20th Asia Pacific Symposium, IES 2016, Canberra, Australia, November 2016, Proceedings / / edited by George Leu, Hemant Kumar Singh, Saber Elsayed
Intelligent and Evolutionary Systems : The 20th Asia Pacific Symposium, IES 2016, Canberra, Australia, November 2016, Proceedings / / edited by George Leu, Hemant Kumar Singh, Saber Elsayed
Edizione [1st ed. 2017.]
Pubbl/distr/stampa Cham : , : Springer International Publishing : , : Imprint : Springer, , 2017
Descrizione fisica 1 online resource (XIV, 510 p.)
Disciplina 005.8
Collana Proceedings in Adaptation, Learning and Optimization
Soggetto topico Computational intelligence
Artificial intelligence
Computational Intelligence
Artificial Intelligence
ISBN 3-319-49049-4
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto From the Content,- An Evolutionary Optimization approach for Path Planning of Arrival Aircraft for Optimal Sequencing -- A Game-Theoretic Approach to the Analysis of Traffic Assignment -- Simulation of Darwin’s and Lamarck’s Theories of Evolution Using.
Record Nr. UNINA-9910150402403321
Cham : , : Springer International Publishing : , : Imprint : Springer, , 2017
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui