top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Artificial Intelligence for Smart Healthcare / / edited by Parul Agarwal, Kavita Khanna, Ahmed A Elngar, Ahmed J. Obaid, Zdzislaw Polkowski
Artificial Intelligence for Smart Healthcare / / edited by Parul Agarwal, Kavita Khanna, Ahmed A Elngar, Ahmed J. Obaid, Zdzislaw Polkowski
Autore Agarwal Parul
Edizione [1st ed. 2023.]
Pubbl/distr/stampa Cham : , : Springer International Publishing : , : Imprint : Springer, , 2023
Descrizione fisica 1 online resource (527 pages)
Disciplina 610.28563
Altri autori (Persone) KhannaKavita
ElngarAhmed A
ObaidAhmed J
PolkowskiZdzislaw
Collana EAI/Springer Innovations in Communication and Computing
Soggetto topico Telecommunication
Artificial intelligence
Medical informatics
Computational intelligence
Communications Engineering, Networks
Artificial Intelligence
Health Informatics
Computational Intelligence
ISBN 3-031-23602-5
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Introduction -- Section–1: Fundamentals -- Introduction to Technologies for Smart healthcare -- Drivers and inhibitors of AI in Smart Healthcare -- Current scenario of healthcare compared with smart healthcare -- Section-2: Technologies for Smart healthcare -- Big data analytics in healthcare -- Deep Learning/ Machine learning based diagnostic model for personalized healthcare -- Disease diagnosis and treatment using AI -- AI in medical devices: development and usage, challenges and future frontiers -- AI and drug discovery -- Predictive modelling for diseases and pandemics -- Robotics and AI -- IoT/ IoE based architecture for healthcare -- Advances in M-Health and E-Health -- Emerging trends, paradigms and technologies in smart healthcare -- Section- 3: Challenges and solutions -- Security and Privacy of medical Data/ electronic health records -- Ethical and legal implications of AI driven healthcare -- Strategies and policies as solutions to the existingchallenges -- Section 4: Practical aspect -- Case study on Covid-19 -- Conclusion.
Record Nr. UNINA-9910731470103321
Agarwal Parul  
Cham : , : Springer International Publishing : , : Imprint : Springer, , 2023
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Convergence of Internet of Things and Blockchain Technologies
Convergence of Internet of Things and Blockchain Technologies
Autore Gururaj H. L
Pubbl/distr/stampa Cham : , : Springer International Publishing AG, , 2021
Descrizione fisica 1 online resource (255 pages)
Altri autori (Persone) Ravi KumarV
GoundarSam
ElngarAhmed A
SwathiB. H
Collana EAI/Springer Innovations in Communication and Computing Ser.
Soggetto genere / forma Electronic books.
ISBN 3-030-76216-5
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910497094203321
Gururaj H. L  
Cham : , : Springer International Publishing AG, , 2021
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Fog Computing for Intelligent Cloud IoT Systems
Fog Computing for Intelligent Cloud IoT Systems
Autore Banerjee Chandan
Edizione [1st ed.]
Pubbl/distr/stampa Newark : , : John Wiley & Sons, Incorporated, , 2024
Descrizione fisica 1 online resource (453 pages)
Disciplina 004.67/82
Altri autori (Persone) GhoshAnupam
ChakrabortyRajdeep
ElngarAhmed A
Collana Advances in Learning Analytics for Intelligent Cloud-IoT Systems Series
Soggetto topico Internet of things
Cloud computing
ISBN 9781394175345
1394175345
9781394175338
1394175337
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Cover -- Series Page -- Title Page -- Copyright Page -- Contents -- Preface -- Part I: Study of Fog Computing and Machine Learning -- Chapter 1 Fog Computing: Architecture and Application -- 1.1 Introduction -- 1.2 Fog Computing: An Overview -- 1.3 Fog Computing for Intelligent Cloud-IoT System -- 1.4 Fog Computing Architecture -- 1.5 Basic Modules of Fog Computing -- 1.6 Cloud Computing vs. Fog Computing -- 1.7 Fog Computing vs. IoT -- 1.8 Applications of Fog Computing -- 1.9 Will the Fog Be Taken Over by the Cloud? -- 1.10 Challenges in Fog Computing -- 1.11 Future of Fog Computing -- 1.12 Conclusion -- References -- Chapter 2 A Comparative Review on Different Techniques of Computation Offloading in Mobile Cloud Computing -- 2.1 Introduction -- 2.2 Related Works -- 2.3 Computation Offloading Techniques -- 2.3.1 MAUI Architecture -- 2.3.2 Clone-Cloud Based Model -- 2.3.3 Cuckoo Design -- 2.3.4 MACS Architecture -- 2.3.5 AHP and TOPSIS Design Technique -- 2.3.6 Energy Aware Design for Workflows -- 2.3.7 MCSOS Architecture -- 2.3.8 Cloudlet -- 2.3.9 Jade -- 2.3.10 Phone2Cloud -- 2.4 Conclusion -- 2.5 Future Scope -- 2.6 Acknowledgement -- References -- Chapter 3 Fog Computing for Intelligent Cloud-IoT System: Optimization of Fog Computing in Industry 4.0 -- 3.1 Introduction -- 3.1.1 Industry 4.0 -- 3.1.2 Fog Computing -- 3.1.3 Fog Nodes -- 3.2 How Fog Computing with IIoT Brings Revolution -- 3.2.1 Hierarchical Fog Computing Architecture -- 3.2.2 Layered Fog Computing Architecture -- 3.3 Applications of Fog Computing on Which Industries Rely -- 3.3.1 In the Field of Agriculture -- 3.3.2 In Healthcare Industry -- 3.3.3 In Smart Cities -- 3.3.4 In Education -- 3.3.5 In Entertainment -- 3.4 Data Analysis -- 3.5 Illustration of Fog Computing and Application -- 3.5.1 Figures -- 3.6 Conclusion -- 3.7 Future Scope/Acknowledgement -- References.
Chapter 4 Machine Learning Integration in Agriculture Domain: Concepts and Applications -- 4.1 Introduction -- 4.2 Fog Computing in Agriculture -- 4.2.1 Smart Farming -- 4.3 Methodology -- 4.3.1 Data Source -- 4.3.2 Data Analysis and Pre-Processing -- 4.3.3 Feature Extraction -- 4.3.4 Model Selection -- 4.3.5 Hyper-Parameter Tuning -- 4.3.6 Train-Test Split -- 4.4 Results and Discussion -- 4.4.1 Modeling Algorithms -- 4.5 Conclusion -- 4.6 Future Scope -- References -- Chapter 5 Role of Intelligent IoT Applications in Fog Computing -- 5.1 Introduction -- 5.1.1 PaaS/SaaS Platforms Have Various Benefits That are Crucial to the Success of Many Small IoT Startup Businesses -- 5.2 Cloud Service Model's Drawbacks -- 5.3 Fog Computation -- 5.3.1 Standardization -- 5.3.2 Growing Use Cases for Fog Computing -- 5.3.3 IoT Applications with Intelligence -- 5.3.4 Graphics Processing Units -- 5.4 Recompenses of FoG -- 5.5 Limitation of Fog Computing -- 5.6 Fog Computing with IoT -- 5.6.1 Benefits of Fog Computing with IoT -- 5.6.2 Challenges of Fog Computing with IoT -- 5.7 Edge AI Embedded -- 5.7.1 Key Software Characteristics in Fog Computing -- 5.7.2 Fog Cluster Management -- 5.7.3 Technology for Computing in the Fog -- 5.7.4 Concentrating Intelligence -- 5.7.5 Device-Driven Intelligence -- 5.8 Network Intelligence Objectives -- 5.9 Farming with Fog Computation (Case Study) -- 5.10 Conclusion -- References -- Chapter 6 SaaS-Based Data Visualization Platform-A Study in COVID-19 Perspective -- 6.1 Introduction -- 6.1.1 Motivation and the Problem of Interest -- 6.2 Summary of Objectives -- 6.3 What is a Pandemic? -- 6.4 COVID-19 and Information Gap -- 6.5 Data Visualization and its Importance -- 6.6 Data Management with Data Visualization -- 6.7 What is Power BI? -- 6.7.1 Data Collection & -- Wrangling -- 6.7.2 Data Description & -- Source.
6.7.3 Data Transformation -- 6.8 Output Data -- 6.9 Design & -- Implementation -- 6.9.1 Integration Design -- 6.9.2 High-Level Process Flow -- 6.9.3 Solution Flow -- 6.10 Dashboard Development -- 6.10.1 Landing Page -- 6.10.2 Approach and Design -- 6.10.3 Helpline Information -- 6.10.3.1 Approach and Design -- 6.10.4 Symptom Detection -- 6.10.4.1 Approach and Design -- 6.10.5 Testing Lab Information -- 6.10.5.1 Approach and Design -- 6.10.6 Hospital Information -- 6.10.6.1 Approach and Design -- 6.10.7 Oxygen Suppliers Information -- 6.10.7.1 Approach and Design -- 6.10.8 COVID Cases Information -- 6.10.8.1 Approach and Design -- 6.10.9 Vaccination Information -- 6.10.9.1 Approach and Design -- 6.10.10 Patients' Information -- 6.10.10.1 Approach and Design -- 6.11 Advantages and its Impact -- 6.12 Conclusion and Future Scope -- References -- Chapter 7 A Complete Study on Machine Learning Algorithms for Medical Data Analysis -- 7.1 Introduction -- 7.1.1 Importance of Machine Learning Algorithms in Medical Data Analysis -- 7.2 Pre-Processing Medical Data for Machine Learning -- 7.3 Supervised Learning Algorithms for Medical Data Analysis -- 7.3.1 Linear Regression Algorithm -- 7.3.2 Logistic Regression Algorithm -- 7.3.3 Decision Trees Algorithm -- 7.3.3.1 Advantages of Decision Tree Algorithm -- 7.3.3.2 Limitations of Decision Tree Algorithm -- 7.3.4 Random Forest Algorithm -- 7.3.4.1 Advantages of Random Forest Algorithm -- 7.3.4.2 Limitations of Random Forest Algorithm -- 7.3.4.3 Applications of Random Forest Algorithm in Medical Data Analysis -- 7.3.5 Support Vector Machine Algorithm -- 7.3.5.1 Advantages of SVM Algorithm -- 7.3.5.2 Limitations of SVM Algorithm -- 7.3.5.3 Applications of SVM Algorithm in Medical Data Analysis -- 7.3.6 Naive Bayes Algorithm -- 7.3.7 KNN (K-Nearest Neighbor Algorithm) -- 7.3.7.1 Applications of K-NN Algorithm.
7.3.8 Deep Learning Algorithm -- 7.3.9 Deep Learning Application -- 7.4 Unsupervised Learning Algorithms for Medical Data Analysis -- 7.4.1 Clustering Algorithm -- 7.4.2 Principal Component Analysis Algorithm -- 7.4.3 Independent Component Analysis Algorithm -- 7.4.4 Association Rule Mining Algorithm -- 7.5 Applications of Machine-Learning Algorithms in Medical Data Analysis -- 7.6 Limitations and Challenges of Machine Learning Algorithms in Medical Data Analysis -- 7.7 Future Research Directions and Machine Learning Developments in the Realm of Medical Data Analysis -- 7.8 Conclusion -- References -- Part II: Applications and Analytics -- Chapter 8 Fog Computing in Healthcare: Application Taxonomy, Challenges and Opportunities -- 8.1 Introduction -- 8.2 Research Methodology -- 8.3 Application Taxonomy in FC-Based Healthcare -- 8.3.1 Diagnosis -- 8.3.2 Monitoring -- 8.3.3 Notification -- 8.3.4 Zest of Applications of FC in Healthcare -- 8.4 Challenges in FC-Based Healthcare -- 8.4.1 QoS Optimization -- 8.4.2 Patient Authentication and Access Control -- 8.4.3 Data Processing -- 8.4.4 Data Privacy Preservation -- 8.4.5 Energy Efficiency -- 8.5 Research Opportunities -- 8.5.1 Research Opportunity in Computing -- 8.5.2 Research Opportunity in Security -- 8.5.3 Research Opportunity in Services -- 8.5.4 Research Opportunity in Implementation -- 8.6 Conclusion -- References -- Chapter 9 IoT-Driven Predictive Maintenance Approach in Industry 4.0: A Fiber Bragg Grating (FBG) Sensor Application -- 9.1 Introduction -- 9.2 Review of Related Research Articles -- 9.2.1 Studies on FBG Sensors and Their Role in Industry 4.0 -- 9.2.1.1 Magnetostrictive Material -- 9.2.1.2 Magneto-Optical (MO) Materials -- 9.2.1.3 Magnetic Fluid (MF) Materials -- 9.2.1.4 Magnetically Sensitive Materials and Their Application -- 9.2.1.5 Optical Fiber Current Sensors.
9.3 Research Gaps -- 9.4 Emerging Research Directions -- 9.5 The Broad Concept of FBG Sensor Applications in Industry 4.0 -- 9.6 Conclusion -- References -- Chapter 10 Fog Computing-Enabled Cancer Cell Detection System Using Convolution Neural Network in Internet of Medical Things -- 10.1 Introduction -- 10.2 Fog Computing: Approach of IoMT -- 10.3 Relationship Between IoMT and Deep Neural Network -- 10.4 Fog Computing Enabled CNN for Medical Imaging -- 10.5 Algorithm Approach of Proposed Model -- 10.6 Result and Analysis -- 10.7 Conclusion -- References -- Chapter 11 Application of IoT in Smart Farming and Precision Farming: A Review -- 11.1 Introduction -- 11.2 Methodologies Used in Precision Agriculture -- 11.3 Contribution of IoT in Agriculture -- 11.4 IoT Enabled Smart Farming -- 11.5 IoT Enabled Precision Farming -- 11.6 Machine Learning Enable Precision Farming -- 11.7 Application of Operational Research Method in Farming System -- 11.8 Conclusion -- 11.9 Future Scope -- References -- Chapter 12 Big IoT Data Analytics in Fog Computing -- 12.1 Introduction -- 12.2 Literature Review -- 12.3 Motivation -- 12.4 Fog Computing -- 12.4.1 Fog Node -- 12.4.2 Characteristics of Fog Computing -- 12.4.3 Attributes of Fog Node -- 12.4.4 Fog Computing Service Model -- 12.4.5 Fog Computing Architecture -- 12.4.6 Data Flow and Control Flow in Fog Architecture -- 12.4.7 Fog Deployment Models -- 12.5 Big Data -- 12.5.1 What is Big Data? -- 12.5.2 Source of Big Data -- 12.5.3 Characteristic of Big Data -- 12.6 Big Data Analytics Using Fog Computing -- 12.7 Conclusion -- References -- Chapter 13 IOT-Based Patient Monitoring System in Real Time -- 13.1 Introduction -- 13.2 Components Used -- 13.2.1 Node MCU -- 13.2.2 Heart Rate/Pulse Sensor -- 13.2.3 Temperature Sensor (LM35) -- 13.3 IoT Platform -- 13.3.1 ThingSpeak-IoT Platform Used in This Work.
13.4 Proposed Method.
Record Nr. UNINA-9911019372203321
Banerjee Chandan  
Newark : , : John Wiley & Sons, Incorporated, , 2024
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Proceedings of International Conference on Generative AI, Cryptography and Predictive Analytics : ICGCPA 2024 / / edited by Deepali Virmani, Oscar Castillo, Valentina Emilia Balas, Ahmed A. Elngar
Proceedings of International Conference on Generative AI, Cryptography and Predictive Analytics : ICGCPA 2024 / / edited by Deepali Virmani, Oscar Castillo, Valentina Emilia Balas, Ahmed A. Elngar
Autore Virmani Deepali
Edizione [1st ed. 2025.]
Pubbl/distr/stampa Singapore : , : Springer Nature Singapore : , : Imprint : Springer, , 2025
Descrizione fisica 1 online resource (488 pages)
Disciplina 006.3
Altri autori (Persone) CastilloOscar
BalasValentina Emilia
ElngarAhmed A
Collana Studies in Smart Technologies
Soggetto topico Computational intelligence
Artificial intelligence
Machine learning
Quantitative research
Computational Intelligence
Artificial Intelligence
Machine Learning
Data Analysis and Big Data
ISBN 9789819791323
9819791324
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto T5 Generator: An Aspect Based Analysis of Sentiments -- A Comprehensive Study to Predicting Unethical Activity in Videos through Deep Learning Techniques -- An IoT based Prototype for Water Quality Monitoring and Leak Detection (WQM-LD) Using Ensemble Voting Feature Selection Approach -- An Efficient approach towards heart disease using Machine Learning -- Vision based classification of human activities using 2D CNN and bidirectional LSTM -- Virtual Personal Assistant System Based on Speech Recognition Technology -- Enhanced Techniques for Feature Extraction to Improve Facial Expression Recognition -- Interpretable Drug Interaction Forecasting: Leveraging Graph Neural Networks with Explainable Artificial Intelligence -- An Innovative WGM-Segmented Dielectric Resonator-Based Mm-Wave All-Round Antenna -- Computer Auditory Imagination: A Multi-Model Approach for Audio to Video Synthesis -- Space-IoT using Unlimited lifetime 1U CubeSat-integrated Very High Stiffness and small size Fully Metallic Antenna -- Introducing AI Code Generators In Agile Software Testing -- Improving Machine Learning Models and Neural Network Performance in IoT Systems Using Gradient Descent Methods -- Lightweight Cryptography: Integrating Feedback DNA with the AES Algorithm for Enhanced Security -- Detection, Prevention and Mitigation of Cross Site Scripting Attacks -- Analysis of Hybrid Satellite Cooperative Communication Systems for SISO and MISO -- A Fine-Tuned EfficientNet B1 Framework for Multiclass Skin Cancer Classification -- Effective Strategies for Addressing Class Imbalance in identifying spam on Twitter -- Enhancing Travel Planning Through Data Visualization and Machine Learning -- Utilizing supervised machine learning techniques for predicting the loan approval status of bank customers -- A CNN framework for COVID identification using Radiographic Images -- Handwritten text recognition using Region Proposal Network (RPN) -- Uncertainty-Aware Molecular Property Prediction using Heterogeneous Molecular Graph Neural Networks -- Bridging the Gap - A Multimodal Communication System using Deep Learning -- Driver Alertness Monitoring Through Eye Blinking Patterns -- Alpha Blending Based Adaptive Color Image Watermarking Technique.
Record Nr. UNINA-9910986143103321
Virmani Deepali  
Singapore : , : Springer Nature Singapore : , : Imprint : Springer, , 2025
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Sustainable Development through Machine Learning, AI and IoT [[electronic resource] ] : First International Conference, ICSD 2023, Delhi, India, July 15–16, 2023, Revised Selected Papers / / edited by Pawan Whig, Nuno Silva, Ahmed A. Elngar, Nagender Aneja, Pavika Sharma
Sustainable Development through Machine Learning, AI and IoT [[electronic resource] ] : First International Conference, ICSD 2023, Delhi, India, July 15–16, 2023, Revised Selected Papers / / edited by Pawan Whig, Nuno Silva, Ahmed A. Elngar, Nagender Aneja, Pavika Sharma
Autore Whig Pawan
Edizione [1st ed. 2023.]
Pubbl/distr/stampa Cham : , : Springer Nature Switzerland : , : Imprint : Springer, , 2023
Descrizione fisica 1 online resource (384 pages)
Disciplina 006.3
Altri autori (Persone) SilvaNuno
ElngarAhmed A
AnejaNagender
SharmaPavika
Collana Communications in Computer and Information Science
Soggetto topico Artificial intelligence
Computer engineering
Computer networks
Machine learning
Application software
Software engineering
Artificial Intelligence
Computer Engineering and Networks
Machine Learning
Computer and Information Systems Applications
Software Engineering
ISBN 3-031-47055-9
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto For Machine Learning based Papers -- IoT based Paper -- Artificial intelligence based Paper.
Record Nr. UNISA-996565863003316
Whig Pawan  
Cham : , : Springer Nature Switzerland : , : Imprint : Springer, , 2023
Materiale a stampa
Lo trovi qui: Univ. di Salerno
Opac: Controlla la disponibilità qui
Sustainable Development through Machine Learning, AI and IoT : First International Conference, ICSD 2023, Delhi, India, July 15–16, 2023, Revised Selected Papers / / edited by Pawan Whig, Nuno Silva, Ahmed A. Elngar, Nagender Aneja, Pavika Sharma
Sustainable Development through Machine Learning, AI and IoT : First International Conference, ICSD 2023, Delhi, India, July 15–16, 2023, Revised Selected Papers / / edited by Pawan Whig, Nuno Silva, Ahmed A. Elngar, Nagender Aneja, Pavika Sharma
Autore Whig Pawan
Edizione [1st ed. 2023.]
Pubbl/distr/stampa Cham : , : Springer Nature Switzerland : , : Imprint : Springer, , 2023
Descrizione fisica 1 online resource (384 pages)
Disciplina 006.3
Altri autori (Persone) SilvaNuno
ElngarAhmed A
AnejaNagender
SharmaPavika
Collana Communications in Computer and Information Science
Soggetto topico Artificial intelligence
Computer engineering
Computer networks
Machine learning
Application software
Software engineering
Artificial Intelligence
Computer Engineering and Networks
Machine Learning
Computer and Information Systems Applications
Software Engineering
ISBN 9783031470554
3031470559
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto For Machine Learning based Papers -- IoT based Paper -- Artificial intelligence based Paper.
Record Nr. UNINA-9910765487903321
Whig Pawan  
Cham : , : Springer Nature Switzerland : , : Imprint : Springer, , 2023
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui