top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Dynamic spectrum access decisions : local, distributed, centralized and hybrid designs / / George F. Elmasry
Dynamic spectrum access decisions : local, distributed, centralized and hybrid designs / / George F. Elmasry
Autore Elmasry George F.
Pubbl/distr/stampa Hoboken, New Jersey, USA : , : Wiley, , 2020
Descrizione fisica 1 online resource (748 pages)
Disciplina 384.54524
Soggetto topico Radio resource management (Wireless communications)
Cognitive radio networks
ISBN 1-119-57379-3
1-119-57377-7
1-119-57378-5
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto About the Author -- Preface -- List of Acronyms -- Part 1: DSA Basic Design Concept -- 1 Introduction -- 1.1 Summary of DSA decision making processes -- 1.2 The hierarchy of DSA decision making -- 1.3 The impact of DSA control traffic -- 1.4 The involvement of DSA decision making -- 1.5 The pitfalls of DSA decision making -- 1.6 Concluding remarks -- 1.7 1Exercises -- Bibliography -- 2 Spectrum Sensing Technique -- 2.1 Multidimensional spectrum sensing and sharing -- 2.2 Time, frequency and power spectrum sensing -- 2.3 Energy detection sensing -- 2.3.1 Energy detection sensing of a communications signal (same-channel in-band sensing) -- 2.3.2 Time domain energy detection -- 2.3.3 Frequency domain energy detection -- 2.4 Signal characteristics spectrum sensing -- 2.4.1 Matched filter based spectrum sensing -- 2.4.2 Autocorrelation based spectrum sensing -- 2.4.3 Spreading code spectrum sensing -- 2.4.4 Frequency hopping spectrum sensing -- 2.4.5 Orthogonality based spectrum sensing -- 2.4.6 Waveform based spectrum sensing -- 2.4.7 Cyclostationarity based spectrum sensing -- 2.5 Euclidean space based detection -- 2.5.1 Geographical space detection -- 2.5.2 Angle of RF beam detection -- 2.6 Other sensing techniques -- 2.7 Concluding remarks -- 2.8 Exercises -- Bibliography -- 3 Receiver Operating Characteristics (ROC) and Decision Fusion -- 3.1 Basic ROC model adaptation for DSA -- 3.2 Adapting the ROC model for same-channel in-band sensing -- 3.3 Decision fusion -- 3.3.1 Local decision fusion -- 3.3.1.1 Local decision fusion for same-channel in-band sensing -- 3.3.1.2 Local decision fusion with directional energy detection -- 3.3.2 Distributed and centralized decision fusion -- 3.4 Concluding remarks -- 3.5 Exercises -- Appendix A: Basic principles of the ROC model -- A1. The ROC curve as connecting points -- A2. The ROC curve classifications -- Bibliography -- 4 Designing a Hybrid DSA System -- 4.1 Reasons for using hybrid DSA design approach -- 4.2 Decision fusion cases.
4.3 The role of other cognitive processes -- 4.4 How far can distributed cooperative DSA design go? -- 4.5 Using a centralized DSA arbitrator -- 4.6 Concluding remarks -- 4.7 Exercises -- Bibliography -- Part 2: Case Studies -- 5 DSA as a Set of Cloud Services -- 5.1 DSA services in the hierarchy of heterogeneous networks -- 5.2 The generic DSA cognitive engine skeleton -- 5.2.1 The main thread in the central arbitrator DSA cognitive engine -- 5.2.2 A critical thread in the gateway DSA cognitive engine -- 5.2.3 The gateway cognitive engine propagation of fused information to the central arbitrator thread -- 5.3 DSA cloud services metrics -- 5.3.1 DSA cloud services metrics model -- 5.3.2 DSA cloud services metrology -- 5.3.3 Examples of DSA cloud services metrics -- 5.3.3.1 Response time -- 5.3.3.2 Hidden node -- 5.3.3.3 Meeting traffic demand -- 5.3.3.4 Rippling -- 5.3.3.5 Co-site interference impact -- 5.3.3.6 Other metrics -- 5.3.3.7 Generalizing a metric description -- 5.4 Concluding remarks -- 5.5 Exercises -- Bibliography -- 6 Dynamic Spectrum Management for 5G Cellular Systems -- 6.1 Basic concepts of 5G -- 6.2 Spatial modeling and the impact of 5G dense cell deployment -- 6.2.1 Spatial modeling and SIR -- 6.2.2. SIR and connectivity -- 6.2.3 Generl case connectivity and coverage -- 6.2.3.1 Transmission capacity -- 6.2.3.2 5G cell overlay -- 6.3 Stages of 5G SI cancellation -- 6.4 5G and cooperative spectrum sensing -- 6.4.1 The macrocell as the main fusion center -- 6.4.2 Spectrum agents (SAs) operate autonomously -- 6.4.3 The end user as its own arbitrator -- 6.5 Power control, orthogonality and 5G spectrum utilization -- 6.6 The role of the cell and end user devices in 5G DSM -- 6.7 Concluding remarks -- 6.8 Exercises -- Bibliography -- 7 DSA and 5G Adaptation to Military Communications -- 7.1 Multilayer security enhancements of 5G -- 7.2 MIMO design considerations -- 7.2.1 The use of MU MIMO -- 7.2.2 The use of MIMO channel training symbols for LPD/LPI.
7.2.3 The use of MIMO channel feedback mechanism for LPD/LPI -- 7.2.4 The use of MU MIMO for Multipath hopping -- 7.2.5 The use of MU MIMO to avoid eavesdroppers -- 7.2.6 The use of MU MIMO to discover jammers -- 7.2.7 Beamforming and LPI/LPD -- 7.3 Multifaceted optimization of MU MIMO channel in military applications -- 7.4 Other security approaches -- 7.4.1 Bottom up deployment approach -- 7.4.2 Switching a network to an anti-jamming (AJ) waveform -- 7.5 Concluding remarks -- 7.6 Exercises -- Bibliography -- 8 DSA and Co-site Interference Mitigation -- 8.1 Power spectral density lobes -- 8.2 Co-site interference between frequencies in different bands -- 8.3 Co-site interference for unlicensed frequency blocks -- 8.4 Adapting the platforḿs co-site interference analysis process for DSA services -- 8.5 Adapting the external systemś co-site interference analysis for DSA -- 8.6 Considering the inter-system co-site interference impact -- 8.7 Using lookup tables as weighted metrics -- 8.8 Co-site interference incorporation in decision fusion and fine-tuning of co-site impact -- 8.9 DSA systeḿs co-site interference impact on external systems -- 8.10 The locations where co-site interference lookup tables and metrics are utilized -- 8.11 Concluding Remarks -- Bibliography -- Part 3: TECHNIQUES FOR SPECTRUM MANAGEMENT OPERATIONS -- Page -- PREFACE iv -- INTRODUCTION v -- Chapter 1 OVERVIEW 1-1 -- Electromagnetic Spectrum 1-1 -- Definition 1-3 -- Objective 1-4 -- Core Functions 1-5 -- Army Spectrum Management Operations Process 1-5 -- Chapter 2 TACTICAL STAFF ORGANIZATION AND PLANNING 2-1 -- Spectrum Management Operations for Corps and Below 2-1 -- Division, Brigade and Battalion Spectrum Operations 2-3 -- Spectrum Managers Assigned to Cyber Electromagnetic Activity -- Working Group 2-3 -- Cyber Electromagnetic Activities Element 2-4 -- Tips for Spectrum Managers 2-6 -- The Military Decisionmaking Process 2-7 -- Support to the MDMP Steps 2-8 -- The Common Operational Picture 2-10.
Chapter 3 SUPPORT TO THE WARFIGHTING FUNCTIONS 3-1 -- Movement and Maneuver 3-1 -- Intelligence 3-1 -- Fires 3-1 -- Sustainment 3-2 -- Mission Command 3-2 -- Protection 3-4 -- Chapter 4 JOINT TASK FORCE CONSIDERATIONS 4-1 -- Inputs and Products of Joint Task Force Spectrum Managers 4-1 -- Joint Frequency Management Office 4-1 -- Joint Spectrum Management Element 4-3 -- Spectrum Management Support to Defense Support of Civil -- Authorities 4-6 -- Chapter 5 SPECTRUM MANAGEMENT OPERATIONS TOOLS 5-1 -- Tool Considerations 5-1 -- Joint Spectrum Interference Resolution Online 5-11 -- Joint Spectrum Data Repository 5-11 -- Appendix A SPECTRUM MANAGEMENT TASK LIST A-1 -- Appendix B CAPABILITIES AND COMPATIBILITY BETWEEN TOOLS B-1 -- Appendix C SPECTRUM PHYSICS C-1 -- Appendix D SPECTRUM MANAGEMENT LIFECYCLE D-1 -- Appendix E MILITARY TIME ZONE DESIGNATORS E-1 -- Part 4: THE IEEE STANDARDS 1900x - 2019 -- Dynamic Spectrum Access Networks Standards Committee (DySPAN-SC) -- IEEE Standard for Definitions and Concepts for Dynamic Spectrum Access: Terminology Relating to Emerging Wireless Networks, System Functionality, and Spectrum Management -- 1. Overview 12 -- 1.1 Scope 12 -- 1.2 Purpose 12 -- 2. Acronyms and abbreviations 13 -- 3. Definitions of advanced radio system concepts 14 -- 3.1 Adaptive radio 14 -- 3.2 Cognitive radio 15 -- 3.3 Hardware-defined radio 15 -- 3.4 Hardware radio 15 -- 3.5 Intelligent radio 16 -- 3.6 Policy-based radio 16 -- 3.7 Reconfigurable radio 16 -- 3.8 Software-controlled radio 16 -- 3.9 Software-defined radio 16 -- 4. Definitions of radio system functional capabilities 17 -- 4.1 Adaptive modulation 17 -- 4.2 Cognition 17 -- 4.3 Cognitive control mechanism 17 -- 4.4 Cognitive process 17 -- 4.5 Cognitive radio system 18 -- 4.6 Frequency agility 18 -- 4.7 Geolocation capability 18 -- 4.8 Location awareness 18 -- 4.9 Policy-based control mechanism 18 -- 4.10 Policy conformance reasoner 19 -- 4.11 Policy enforcer 19 -- 4.12 Radio awareness 19 -- 4.13 Software controlled 19.
4.14 Software defined 19 -- 4.15 System strategy reasoning capability 19 -- 4.16 Transmit power control 20 -- 5. Definitions of decision-making and control concepts that support advanced radio system technologies 20 -- 5.1 Coexistence policy 20 -- 5.2 DSA policy language 20 -- 5.3 Formal policy 20 -- 5.4 Meta-policy 20 -- 5.5 Model-theoretic computational semantics 20 -- 5.6 Policy language 20 -- 5.7 Reasoner 21 -- 6. Definitions of network technologies that support advanced radio system technologies 21 -- 6.1 Cognitive radio network 21 -- 6.2 Dynamic spectrum access networks 21 -- 6.3 Reconfigurable networks 21 -- 7. Spectrum management definitions 21 -- 7.1 Allocation 21 -- 7.2 Clear channel assessment function 22 -- 7.3 Coexistence 22 -- 7.4 Coexistence mechanism 22 -- 7.5 Cognitive interference avoidance 22 -- 7.6 Collaboration 22 -- 7.7 Collaborative decoding 22 -- 7.8 Cooperation 23 -- 7.9 Data archive 23 -- 7.10 Distributed radio resource usage optimization 23 -- 7.11 Distributed sensing 23 -- 7.12 Dynamic channel assignment 23 -- 7.13 Dynamic frequency selection 23 -- 7.14 Dynamic frequency sharing 24 -- 7.15 Dynamic spectrum access 24 -- 7.16 Dynamic spectrum assignment 24 -- 7.17 Dynamic spectrum management 25 -- 7.18 Electromagnetic compatibility 25 -- 7.19 Frequency hopping 25 -- 7.20 Frequency sharing 25 -- 7.21 Hierarchical spectrum access 25 -- 7.22 Horizontal spectrum sharing 26 -- 7.23 Interference 26 -- 7.24 Opportunistic spectrum access 26 -- 7.25 Opportunistic spectrum management 26 -- 7.26 Policy authority 26 -- 7.27 Policy traceability 27 -- 7.28 Radio environment map 27 -- 7.29 RF environment map 27 -- 7.30 Sensing control information 27 -- 7.31 Sensing information 27 -- 7.32 Sensor 27 -- 7.33 Spectral opportunity 27 -- 7.34 Spectrum access 27 -- 7.35 Spectrum broker 28 -- 7.36 Spectrum efficiency 28 -- 7.37 Spectrum etiquette 28 -- 7.38 Spectrum leasing 28 -- 7.39 Spectrum management 28 -- 7.40 Spectrum overlay 29 -- 7.41 Spectrum owner 29.
7.42 Spectrum pooling 29 -- 7.43 Spectrum sensing 29 -- 7.44 Cooperative spectrum sensing 30 -- 7.45 Collaborative spectrum sensing 30 -- 7.46 Spectrum sharing 30 -- 7.47 Spectrum underlay 30 -- 7.48 Spectrum utilization 30 -- 7.49 Spectrum utilization efficiency 31 -- 7.50 Vertical spectrum sharing 31 -- 7.51 White space 32 -- 7.52 White space database 32 -- 7.53 White space frequency band 32 -- 7.54 White space spectrum band 32 -- 8. Glossary of ancillary terminology 32 -- 8.1 Air interface 32 -- 8.2 Digital policy 32 -- 8.3 Domain 33 -- 8.4 Interference temperature 33 -- 8.5 Interoperability 33 -- 8.6 Machine learning 33 -- 8.7 Machine-understandable policies 33 -- 8.8 Ontology 33 -- 8.9 Policy 34 -- 8.10 Quality of service 34 -- 8.11 Radio 34 -- 8.12 Radio node 35 -- 8.13 Radio spectrum 35 -- 8.14 Receiver 35 -- 8.15 Software 35 -- 8.16 Transmitter 35 -- 8.17 Waveform 35 -- 8.18 Waveform processing 36 -- Annex A (informative) Implications of advanced radio system technologies for spectrum 37 -- Annex B (informative) Explanatory notes on advanced radio system technologies and advanced spectrum management concepts 41 -- Annex C (informative) List of deleted terms from the previous versions of IEEE Std 1901.1 66 -- Annex D (informative) Bibliography 73 -- IEEE Recommended Practice for the Analysis of In-Band and Adjacent Band Interference and Coexistence Between Radio Systems -- 1. Overview 1 -- 1.1 Relationship to traditional spectrum management 1 -- 1.2 Introduction to this recommended practice 2 -- 1.3 Scope 2 -- 1.4 Purpose 3 -- 1.5 Rationale 3 -- 2. Normative references 5 -- 3. Definitions, acronyms, and abbreviations 5 -- 3.1 Definitions 5 -- 3.2 Acronyms and abbreviations 7 -- 4. Key concepts 8 -- 4.1 Interference and coexistence analysis 8 -- 4.2 Measurement event 8 -- 4.3 Interference event 9 -- 4.4 Harmful interference 9 -- 4.5 Physical and logical domains 9 -- 5. Structure of analysis and report 10 -- 5.1 Structure for analysis 10 -- 5.2 Process floẃdivergence, reduction, and convergence 12.
5.3 Report structure 14 -- 6. Scenario definition 14 -- 6.1 General 14 -- 6.2 Study question 16 -- 6.3 Benefits and impacts of proposal 16 -- 6.4 Scenario(s) and usage model 16 -- 6.5 Case(s) for analysis 25 -- 7. Criteria for interference 25 -- 7.1 General 25 -- 7.2 Interference characteristics 26 -- 7.3 Measurement event 28 -- 7.4 Interference event 28 -- 7.5 Harmful interference criteria 28 -- 8. Variables 32 -- 8.1 General 32 -- 8.2 Variable selection 34 -- 9. Analysiśmodeling, simulation, measurement, and testing 35 -- 9.1 General 35 -- 9.2 Selection of the analysis approach, tools, and techniques 36 -- 9.3 Matrix reduction 37 -- 9.4 Performing the analysis 38 -- 9.5 Quantification of benefits and interference 38 -- 9.6 Analysis of mitigation options 38 -- 9.7 Analysis uncertainty 38 -- 10. Conclusions and summary 39 -- 10.1 Benefits and impacts 39 -- 10.2 Summation 39 -- Annex A (informative) Propagation modeling 40 -- Annex B (informative) Audio interference 48 -- Annex C (informative) Spectrum utilization efficiency 51 -- Annex D (informative) Sample analysiśselection of listen-before-talk threshold 55 -- Annex E (informative) Sample analysiśeffect of out-of-band emissions on a LBT band 63 -- Annex F (informative) Sample analysiśLow-power radios operating in the TV band 70 -- Annex G (informative) Sample analysiśRF test levels for ANSI C63.9 [B3] 81 -- Annex H (normative) Glossary 89 -- Annex I (informative) Bibliography 93 -- IEEE Standard for Architectural Building Blocks Enabling Network-Device Distributed Decision Making for Optimized Radio Resource Usage in Heterogeneous Wireless Access Networks -- 1. Overview 1 -- 1.1 Scope 1 -- 1.2 Purpose 1 -- 1.3 Document overview 1 -- 2. Normative references 2 -- 3. Definitions, acronyms, and abbreviations 3 -- 3.1 Definitions 3 -- 3.2 Acronyms and abbreviations 5 -- 4. Overall system description 5 -- 4.1 System overview 5 -- 4.2 Summary of use cases 7 -- 4.3 Assumptions 8 -- 5. Requirements 9 -- 5.1 System requirements 9.
5.2 Functional requirements 12 -- 5.3 Information model requirements 14 -- 6. Architecture 14 -- 6.1 System description 14 -- 6.2 Functional description 18 -- 7. Information model 24 -- 7.1 Introduction 24 -- 7.2 Information modeling approach 25 -- 7.3 Information model classes 25 -- 8. Procedures 32 -- 8.1 Introduction 32 -- 8.2 Generic procedures 36 -- 8.3 Examples of use case realization 49 -- Annex A (informative) Use cases 53 -- A.1 Dynamic spectrum assignment 53 -- A.2 Dynamic spectrum sharing 59 -- A.3 Distributed radio resource usage optimization 61 -- Annex B (normative) Class definitions for information model 63 -- B.1 Notational tools 63 -- B.2 Common base class 64 -- B.3 Policy classes 64 -- B.4 Terminal classes 66 -- B.5 CWN classes 74 -- B.6 Relations between terminal and CWN classes 82 -- Annex C (normative) Data type definitions for information model 84 -- C.1 Function definitions 84 -- C.2 ASN.1 type definitions 86 -- Annex D (informative) Information model extensions and usage example 93 -- D.1 Functions for external management interface 93 -- D.2 Additional utility classes 94 -- D.3 Additional ASN.1 type definitions for utility classes 103 -- D.4 Example for distributed radio resource usage optimization use case 104 -- Annex E (informative) Deployment examples 109 -- E.1 Introduction 109 -- E.2 Deployment examples for single operator scenario 109 -- E.3 Multiple operator scenario 1 (NRM is inside operator) 114 -- E.4 Multiple operator scenario 2 (NRM is outside operator) 115 -- Annex F (informative) Bibliography 117 -- IEEE Standard for Policy Language Requirements and System Architectures for Dynamic Spectrum Access Systems -- 1. Overview 1 -- 1.1 Scope 1 -- 1.2 Purpose 1 -- 1.3 Document overview 2 -- 2. Normative references 2 -- 3. Definitions, acronyms, and abbreviations 2 -- 3.1 Definitions 2 -- 3.2 Acronyms and abbreviations 6 -- 4. Architecture requirements for policy-based control of DSA radio systems 8 -- 4.1 General architecture requirements 8.
4.2 Policy management requirements 9 -- 5. Architecture components and interfaces for policy-based control of DSA radio systems 10 -- 5.1 Policy management point 12 -- 5.2 Policy conformance reasoner 12 -- 5.3 Policy enforcer (PE) 14 -- 5.4 Policy repository 15 -- 5.5 System strategy reasoning capability (SSRC) 16 -- 6. Policy language and reasoning requirements 17 -- 6.1 Language expressiveness 18 -- 6.2 Reasoning about policies 27 -- Annex A (informative) Use cases 29 -- Annex B (informative) Illustrative examples of DSA policy-based architecture 31 -- Annex C (informative) Relation of IEEE 1900.5 policy architecture to other policy architectures 33 -- Annex D (informative) Characteristics of imperative (procedural) and declarative languages for satisfying language requirements for cognitive radio systems 35 -- Annex E (informative) Example sequence diagrams of IEEE 1900.5 system 36 -- E.1 Overview 36 -- E.2 Assumptions 36 -- E.3 Sequence diagram organization 37 -- Annex F (informative) Bibliography 41 -- IEEE Standard for Spectrum Sensing Interfaces and Data Structures for Dynamic Spectrum Access and Other Advanced Radio Communication Systems -- 1. Overview 1 -- 1.1 Scope 2 -- 1.2 Purpose 2 -- 1.3 Interfaces and sample application areas 2 -- 1.4 Conformance keywords 4 -- 2. Normative references 4 -- 3. Definitions, acronyms and abbreviations 5 -- 3.1 Definitions 5 -- 3.2 Acronyms and abbreviations 7 -- 4. System model 8 -- 4.1 Scenario 1: Single CE/DA and single Sensor 8 -- 4.2 Scenario 2: Single CE/DA and multiple Sensors 9 -- 4.3 Scenario 3: Multiple CE/DA and single Sensor 10 -- 5. The IEEE 1900.6 reference model 11 -- 5.1 General description 11 -- 5.2 An implementation example of the IEEE 1900.6 reference model 14 -- 5.3 Service access points (SAPs) 15 -- 6. Information description 70 -- 6.1 Information categories 70 -- 6.2 Data types 73 -- 6.3 Description of sensing-related parameters 75 -- 6.4 Data representation 88 -- 7. State diagram and generic procedures 95.
7.1 State description 95 -- 7.2 State transition description 96 -- 7.3 Generic procedures 98 -- 7.4 Example procedures for use cases 101 -- Annex A (informative) Use cases 107 -- Annex B (informative) Use case classification 143 -- Annex C (informative) Implementation of distributed sensing 148 -- Annex D (informative) IEEE 1900.6 DA: Scope and usage 153 -- Annex E (informative) Analysis of available/future technologies 157 -- Annex F (informative) Bibliography 15 -- IEEE Standard for Radio Interface for White Space Dynamic Spectrum Access Radio Systems Supporting Fixed and Mobile Operation -- 1. Overview 1 -- 1.1 Scope 1 -- 1.2 Purpose 1 -- 2. Definitions, acronyms, and abbreviations 2 -- 2.1 Definitions 2 -- 2.2 Acronyms and abbreviations 2 -- 3. Reference model 3 -- 4. MAC sublayer 4 -- 4.1 Architecture of the MAC sublayer 4 -- 4.2 Type definition 4 -- 4.3 MAC frame formats 4 -- 4.4 MAC sublayer service specification 9 -- 4.5 MAC functional description 24 -- 5. PHY layer 37 -- 5.1 PHY layer service specification 37 -- 5.2 CRC method 42 -- 5.3 Channel coding (including interleaving and modulation) 42 -- 5.4 Mapping modulated symbols to carriers 47 -- 5.5 Transmitter requirements 53 -- Annex A (informative) Coexistence considerations 55.
Record Nr. UNINA-9910554805503321
Elmasry George F.  
Hoboken, New Jersey, USA : , : Wiley, , 2020
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Dynamic spectrum access decisions : local, distributed, centralized and hybrid designs / / George F. Elmasry
Dynamic spectrum access decisions : local, distributed, centralized and hybrid designs / / George F. Elmasry
Autore Elmasry George F.
Pubbl/distr/stampa Hoboken, New Jersey, USA : , : Wiley, , 2020
Descrizione fisica 1 online resource (748 pages)
Disciplina 384.54524
Soggetto topico Radio resource management (Wireless communications)
Cognitive radio networks
ISBN 1-119-57379-3
1-119-57377-7
1-119-57378-5
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto About the Author -- Preface -- List of Acronyms -- Part 1: DSA Basic Design Concept -- 1 Introduction -- 1.1 Summary of DSA decision making processes -- 1.2 The hierarchy of DSA decision making -- 1.3 The impact of DSA control traffic -- 1.4 The involvement of DSA decision making -- 1.5 The pitfalls of DSA decision making -- 1.6 Concluding remarks -- 1.7 1Exercises -- Bibliography -- 2 Spectrum Sensing Technique -- 2.1 Multidimensional spectrum sensing and sharing -- 2.2 Time, frequency and power spectrum sensing -- 2.3 Energy detection sensing -- 2.3.1 Energy detection sensing of a communications signal (same-channel in-band sensing) -- 2.3.2 Time domain energy detection -- 2.3.3 Frequency domain energy detection -- 2.4 Signal characteristics spectrum sensing -- 2.4.1 Matched filter based spectrum sensing -- 2.4.2 Autocorrelation based spectrum sensing -- 2.4.3 Spreading code spectrum sensing -- 2.4.4 Frequency hopping spectrum sensing -- 2.4.5 Orthogonality based spectrum sensing -- 2.4.6 Waveform based spectrum sensing -- 2.4.7 Cyclostationarity based spectrum sensing -- 2.5 Euclidean space based detection -- 2.5.1 Geographical space detection -- 2.5.2 Angle of RF beam detection -- 2.6 Other sensing techniques -- 2.7 Concluding remarks -- 2.8 Exercises -- Bibliography -- 3 Receiver Operating Characteristics (ROC) and Decision Fusion -- 3.1 Basic ROC model adaptation for DSA -- 3.2 Adapting the ROC model for same-channel in-band sensing -- 3.3 Decision fusion -- 3.3.1 Local decision fusion -- 3.3.1.1 Local decision fusion for same-channel in-band sensing -- 3.3.1.2 Local decision fusion with directional energy detection -- 3.3.2 Distributed and centralized decision fusion -- 3.4 Concluding remarks -- 3.5 Exercises -- Appendix A: Basic principles of the ROC model -- A1. The ROC curve as connecting points -- A2. The ROC curve classifications -- Bibliography -- 4 Designing a Hybrid DSA System -- 4.1 Reasons for using hybrid DSA design approach -- 4.2 Decision fusion cases.
4.3 The role of other cognitive processes -- 4.4 How far can distributed cooperative DSA design go? -- 4.5 Using a centralized DSA arbitrator -- 4.6 Concluding remarks -- 4.7 Exercises -- Bibliography -- Part 2: Case Studies -- 5 DSA as a Set of Cloud Services -- 5.1 DSA services in the hierarchy of heterogeneous networks -- 5.2 The generic DSA cognitive engine skeleton -- 5.2.1 The main thread in the central arbitrator DSA cognitive engine -- 5.2.2 A critical thread in the gateway DSA cognitive engine -- 5.2.3 The gateway cognitive engine propagation of fused information to the central arbitrator thread -- 5.3 DSA cloud services metrics -- 5.3.1 DSA cloud services metrics model -- 5.3.2 DSA cloud services metrology -- 5.3.3 Examples of DSA cloud services metrics -- 5.3.3.1 Response time -- 5.3.3.2 Hidden node -- 5.3.3.3 Meeting traffic demand -- 5.3.3.4 Rippling -- 5.3.3.5 Co-site interference impact -- 5.3.3.6 Other metrics -- 5.3.3.7 Generalizing a metric description -- 5.4 Concluding remarks -- 5.5 Exercises -- Bibliography -- 6 Dynamic Spectrum Management for 5G Cellular Systems -- 6.1 Basic concepts of 5G -- 6.2 Spatial modeling and the impact of 5G dense cell deployment -- 6.2.1 Spatial modeling and SIR -- 6.2.2. SIR and connectivity -- 6.2.3 Generl case connectivity and coverage -- 6.2.3.1 Transmission capacity -- 6.2.3.2 5G cell overlay -- 6.3 Stages of 5G SI cancellation -- 6.4 5G and cooperative spectrum sensing -- 6.4.1 The macrocell as the main fusion center -- 6.4.2 Spectrum agents (SAs) operate autonomously -- 6.4.3 The end user as its own arbitrator -- 6.5 Power control, orthogonality and 5G spectrum utilization -- 6.6 The role of the cell and end user devices in 5G DSM -- 6.7 Concluding remarks -- 6.8 Exercises -- Bibliography -- 7 DSA and 5G Adaptation to Military Communications -- 7.1 Multilayer security enhancements of 5G -- 7.2 MIMO design considerations -- 7.2.1 The use of MU MIMO -- 7.2.2 The use of MIMO channel training symbols for LPD/LPI.
7.2.3 The use of MIMO channel feedback mechanism for LPD/LPI -- 7.2.4 The use of MU MIMO for Multipath hopping -- 7.2.5 The use of MU MIMO to avoid eavesdroppers -- 7.2.6 The use of MU MIMO to discover jammers -- 7.2.7 Beamforming and LPI/LPD -- 7.3 Multifaceted optimization of MU MIMO channel in military applications -- 7.4 Other security approaches -- 7.4.1 Bottom up deployment approach -- 7.4.2 Switching a network to an anti-jamming (AJ) waveform -- 7.5 Concluding remarks -- 7.6 Exercises -- Bibliography -- 8 DSA and Co-site Interference Mitigation -- 8.1 Power spectral density lobes -- 8.2 Co-site interference between frequencies in different bands -- 8.3 Co-site interference for unlicensed frequency blocks -- 8.4 Adapting the platforḿs co-site interference analysis process for DSA services -- 8.5 Adapting the external systemś co-site interference analysis for DSA -- 8.6 Considering the inter-system co-site interference impact -- 8.7 Using lookup tables as weighted metrics -- 8.8 Co-site interference incorporation in decision fusion and fine-tuning of co-site impact -- 8.9 DSA systeḿs co-site interference impact on external systems -- 8.10 The locations where co-site interference lookup tables and metrics are utilized -- 8.11 Concluding Remarks -- Bibliography -- Part 3: TECHNIQUES FOR SPECTRUM MANAGEMENT OPERATIONS -- Page -- PREFACE iv -- INTRODUCTION v -- Chapter 1 OVERVIEW 1-1 -- Electromagnetic Spectrum 1-1 -- Definition 1-3 -- Objective 1-4 -- Core Functions 1-5 -- Army Spectrum Management Operations Process 1-5 -- Chapter 2 TACTICAL STAFF ORGANIZATION AND PLANNING 2-1 -- Spectrum Management Operations for Corps and Below 2-1 -- Division, Brigade and Battalion Spectrum Operations 2-3 -- Spectrum Managers Assigned to Cyber Electromagnetic Activity -- Working Group 2-3 -- Cyber Electromagnetic Activities Element 2-4 -- Tips for Spectrum Managers 2-6 -- The Military Decisionmaking Process 2-7 -- Support to the MDMP Steps 2-8 -- The Common Operational Picture 2-10.
Chapter 3 SUPPORT TO THE WARFIGHTING FUNCTIONS 3-1 -- Movement and Maneuver 3-1 -- Intelligence 3-1 -- Fires 3-1 -- Sustainment 3-2 -- Mission Command 3-2 -- Protection 3-4 -- Chapter 4 JOINT TASK FORCE CONSIDERATIONS 4-1 -- Inputs and Products of Joint Task Force Spectrum Managers 4-1 -- Joint Frequency Management Office 4-1 -- Joint Spectrum Management Element 4-3 -- Spectrum Management Support to Defense Support of Civil -- Authorities 4-6 -- Chapter 5 SPECTRUM MANAGEMENT OPERATIONS TOOLS 5-1 -- Tool Considerations 5-1 -- Joint Spectrum Interference Resolution Online 5-11 -- Joint Spectrum Data Repository 5-11 -- Appendix A SPECTRUM MANAGEMENT TASK LIST A-1 -- Appendix B CAPABILITIES AND COMPATIBILITY BETWEEN TOOLS B-1 -- Appendix C SPECTRUM PHYSICS C-1 -- Appendix D SPECTRUM MANAGEMENT LIFECYCLE D-1 -- Appendix E MILITARY TIME ZONE DESIGNATORS E-1 -- Part 4: THE IEEE STANDARDS 1900x - 2019 -- Dynamic Spectrum Access Networks Standards Committee (DySPAN-SC) -- IEEE Standard for Definitions and Concepts for Dynamic Spectrum Access: Terminology Relating to Emerging Wireless Networks, System Functionality, and Spectrum Management -- 1. Overview 12 -- 1.1 Scope 12 -- 1.2 Purpose 12 -- 2. Acronyms and abbreviations 13 -- 3. Definitions of advanced radio system concepts 14 -- 3.1 Adaptive radio 14 -- 3.2 Cognitive radio 15 -- 3.3 Hardware-defined radio 15 -- 3.4 Hardware radio 15 -- 3.5 Intelligent radio 16 -- 3.6 Policy-based radio 16 -- 3.7 Reconfigurable radio 16 -- 3.8 Software-controlled radio 16 -- 3.9 Software-defined radio 16 -- 4. Definitions of radio system functional capabilities 17 -- 4.1 Adaptive modulation 17 -- 4.2 Cognition 17 -- 4.3 Cognitive control mechanism 17 -- 4.4 Cognitive process 17 -- 4.5 Cognitive radio system 18 -- 4.6 Frequency agility 18 -- 4.7 Geolocation capability 18 -- 4.8 Location awareness 18 -- 4.9 Policy-based control mechanism 18 -- 4.10 Policy conformance reasoner 19 -- 4.11 Policy enforcer 19 -- 4.12 Radio awareness 19 -- 4.13 Software controlled 19.
4.14 Software defined 19 -- 4.15 System strategy reasoning capability 19 -- 4.16 Transmit power control 20 -- 5. Definitions of decision-making and control concepts that support advanced radio system technologies 20 -- 5.1 Coexistence policy 20 -- 5.2 DSA policy language 20 -- 5.3 Formal policy 20 -- 5.4 Meta-policy 20 -- 5.5 Model-theoretic computational semantics 20 -- 5.6 Policy language 20 -- 5.7 Reasoner 21 -- 6. Definitions of network technologies that support advanced radio system technologies 21 -- 6.1 Cognitive radio network 21 -- 6.2 Dynamic spectrum access networks 21 -- 6.3 Reconfigurable networks 21 -- 7. Spectrum management definitions 21 -- 7.1 Allocation 21 -- 7.2 Clear channel assessment function 22 -- 7.3 Coexistence 22 -- 7.4 Coexistence mechanism 22 -- 7.5 Cognitive interference avoidance 22 -- 7.6 Collaboration 22 -- 7.7 Collaborative decoding 22 -- 7.8 Cooperation 23 -- 7.9 Data archive 23 -- 7.10 Distributed radio resource usage optimization 23 -- 7.11 Distributed sensing 23 -- 7.12 Dynamic channel assignment 23 -- 7.13 Dynamic frequency selection 23 -- 7.14 Dynamic frequency sharing 24 -- 7.15 Dynamic spectrum access 24 -- 7.16 Dynamic spectrum assignment 24 -- 7.17 Dynamic spectrum management 25 -- 7.18 Electromagnetic compatibility 25 -- 7.19 Frequency hopping 25 -- 7.20 Frequency sharing 25 -- 7.21 Hierarchical spectrum access 25 -- 7.22 Horizontal spectrum sharing 26 -- 7.23 Interference 26 -- 7.24 Opportunistic spectrum access 26 -- 7.25 Opportunistic spectrum management 26 -- 7.26 Policy authority 26 -- 7.27 Policy traceability 27 -- 7.28 Radio environment map 27 -- 7.29 RF environment map 27 -- 7.30 Sensing control information 27 -- 7.31 Sensing information 27 -- 7.32 Sensor 27 -- 7.33 Spectral opportunity 27 -- 7.34 Spectrum access 27 -- 7.35 Spectrum broker 28 -- 7.36 Spectrum efficiency 28 -- 7.37 Spectrum etiquette 28 -- 7.38 Spectrum leasing 28 -- 7.39 Spectrum management 28 -- 7.40 Spectrum overlay 29 -- 7.41 Spectrum owner 29.
7.42 Spectrum pooling 29 -- 7.43 Spectrum sensing 29 -- 7.44 Cooperative spectrum sensing 30 -- 7.45 Collaborative spectrum sensing 30 -- 7.46 Spectrum sharing 30 -- 7.47 Spectrum underlay 30 -- 7.48 Spectrum utilization 30 -- 7.49 Spectrum utilization efficiency 31 -- 7.50 Vertical spectrum sharing 31 -- 7.51 White space 32 -- 7.52 White space database 32 -- 7.53 White space frequency band 32 -- 7.54 White space spectrum band 32 -- 8. Glossary of ancillary terminology 32 -- 8.1 Air interface 32 -- 8.2 Digital policy 32 -- 8.3 Domain 33 -- 8.4 Interference temperature 33 -- 8.5 Interoperability 33 -- 8.6 Machine learning 33 -- 8.7 Machine-understandable policies 33 -- 8.8 Ontology 33 -- 8.9 Policy 34 -- 8.10 Quality of service 34 -- 8.11 Radio 34 -- 8.12 Radio node 35 -- 8.13 Radio spectrum 35 -- 8.14 Receiver 35 -- 8.15 Software 35 -- 8.16 Transmitter 35 -- 8.17 Waveform 35 -- 8.18 Waveform processing 36 -- Annex A (informative) Implications of advanced radio system technologies for spectrum 37 -- Annex B (informative) Explanatory notes on advanced radio system technologies and advanced spectrum management concepts 41 -- Annex C (informative) List of deleted terms from the previous versions of IEEE Std 1901.1 66 -- Annex D (informative) Bibliography 73 -- IEEE Recommended Practice for the Analysis of In-Band and Adjacent Band Interference and Coexistence Between Radio Systems -- 1. Overview 1 -- 1.1 Relationship to traditional spectrum management 1 -- 1.2 Introduction to this recommended practice 2 -- 1.3 Scope 2 -- 1.4 Purpose 3 -- 1.5 Rationale 3 -- 2. Normative references 5 -- 3. Definitions, acronyms, and abbreviations 5 -- 3.1 Definitions 5 -- 3.2 Acronyms and abbreviations 7 -- 4. Key concepts 8 -- 4.1 Interference and coexistence analysis 8 -- 4.2 Measurement event 8 -- 4.3 Interference event 9 -- 4.4 Harmful interference 9 -- 4.5 Physical and logical domains 9 -- 5. Structure of analysis and report 10 -- 5.1 Structure for analysis 10 -- 5.2 Process floẃdivergence, reduction, and convergence 12.
5.3 Report structure 14 -- 6. Scenario definition 14 -- 6.1 General 14 -- 6.2 Study question 16 -- 6.3 Benefits and impacts of proposal 16 -- 6.4 Scenario(s) and usage model 16 -- 6.5 Case(s) for analysis 25 -- 7. Criteria for interference 25 -- 7.1 General 25 -- 7.2 Interference characteristics 26 -- 7.3 Measurement event 28 -- 7.4 Interference event 28 -- 7.5 Harmful interference criteria 28 -- 8. Variables 32 -- 8.1 General 32 -- 8.2 Variable selection 34 -- 9. Analysiśmodeling, simulation, measurement, and testing 35 -- 9.1 General 35 -- 9.2 Selection of the analysis approach, tools, and techniques 36 -- 9.3 Matrix reduction 37 -- 9.4 Performing the analysis 38 -- 9.5 Quantification of benefits and interference 38 -- 9.6 Analysis of mitigation options 38 -- 9.7 Analysis uncertainty 38 -- 10. Conclusions and summary 39 -- 10.1 Benefits and impacts 39 -- 10.2 Summation 39 -- Annex A (informative) Propagation modeling 40 -- Annex B (informative) Audio interference 48 -- Annex C (informative) Spectrum utilization efficiency 51 -- Annex D (informative) Sample analysiśselection of listen-before-talk threshold 55 -- Annex E (informative) Sample analysiśeffect of out-of-band emissions on a LBT band 63 -- Annex F (informative) Sample analysiśLow-power radios operating in the TV band 70 -- Annex G (informative) Sample analysiśRF test levels for ANSI C63.9 [B3] 81 -- Annex H (normative) Glossary 89 -- Annex I (informative) Bibliography 93 -- IEEE Standard for Architectural Building Blocks Enabling Network-Device Distributed Decision Making for Optimized Radio Resource Usage in Heterogeneous Wireless Access Networks -- 1. Overview 1 -- 1.1 Scope 1 -- 1.2 Purpose 1 -- 1.3 Document overview 1 -- 2. Normative references 2 -- 3. Definitions, acronyms, and abbreviations 3 -- 3.1 Definitions 3 -- 3.2 Acronyms and abbreviations 5 -- 4. Overall system description 5 -- 4.1 System overview 5 -- 4.2 Summary of use cases 7 -- 4.3 Assumptions 8 -- 5. Requirements 9 -- 5.1 System requirements 9.
5.2 Functional requirements 12 -- 5.3 Information model requirements 14 -- 6. Architecture 14 -- 6.1 System description 14 -- 6.2 Functional description 18 -- 7. Information model 24 -- 7.1 Introduction 24 -- 7.2 Information modeling approach 25 -- 7.3 Information model classes 25 -- 8. Procedures 32 -- 8.1 Introduction 32 -- 8.2 Generic procedures 36 -- 8.3 Examples of use case realization 49 -- Annex A (informative) Use cases 53 -- A.1 Dynamic spectrum assignment 53 -- A.2 Dynamic spectrum sharing 59 -- A.3 Distributed radio resource usage optimization 61 -- Annex B (normative) Class definitions for information model 63 -- B.1 Notational tools 63 -- B.2 Common base class 64 -- B.3 Policy classes 64 -- B.4 Terminal classes 66 -- B.5 CWN classes 74 -- B.6 Relations between terminal and CWN classes 82 -- Annex C (normative) Data type definitions for information model 84 -- C.1 Function definitions 84 -- C.2 ASN.1 type definitions 86 -- Annex D (informative) Information model extensions and usage example 93 -- D.1 Functions for external management interface 93 -- D.2 Additional utility classes 94 -- D.3 Additional ASN.1 type definitions for utility classes 103 -- D.4 Example for distributed radio resource usage optimization use case 104 -- Annex E (informative) Deployment examples 109 -- E.1 Introduction 109 -- E.2 Deployment examples for single operator scenario 109 -- E.3 Multiple operator scenario 1 (NRM is inside operator) 114 -- E.4 Multiple operator scenario 2 (NRM is outside operator) 115 -- Annex F (informative) Bibliography 117 -- IEEE Standard for Policy Language Requirements and System Architectures for Dynamic Spectrum Access Systems -- 1. Overview 1 -- 1.1 Scope 1 -- 1.2 Purpose 1 -- 1.3 Document overview 2 -- 2. Normative references 2 -- 3. Definitions, acronyms, and abbreviations 2 -- 3.1 Definitions 2 -- 3.2 Acronyms and abbreviations 6 -- 4. Architecture requirements for policy-based control of DSA radio systems 8 -- 4.1 General architecture requirements 8.
4.2 Policy management requirements 9 -- 5. Architecture components and interfaces for policy-based control of DSA radio systems 10 -- 5.1 Policy management point 12 -- 5.2 Policy conformance reasoner 12 -- 5.3 Policy enforcer (PE) 14 -- 5.4 Policy repository 15 -- 5.5 System strategy reasoning capability (SSRC) 16 -- 6. Policy language and reasoning requirements 17 -- 6.1 Language expressiveness 18 -- 6.2 Reasoning about policies 27 -- Annex A (informative) Use cases 29 -- Annex B (informative) Illustrative examples of DSA policy-based architecture 31 -- Annex C (informative) Relation of IEEE 1900.5 policy architecture to other policy architectures 33 -- Annex D (informative) Characteristics of imperative (procedural) and declarative languages for satisfying language requirements for cognitive radio systems 35 -- Annex E (informative) Example sequence diagrams of IEEE 1900.5 system 36 -- E.1 Overview 36 -- E.2 Assumptions 36 -- E.3 Sequence diagram organization 37 -- Annex F (informative) Bibliography 41 -- IEEE Standard for Spectrum Sensing Interfaces and Data Structures for Dynamic Spectrum Access and Other Advanced Radio Communication Systems -- 1. Overview 1 -- 1.1 Scope 2 -- 1.2 Purpose 2 -- 1.3 Interfaces and sample application areas 2 -- 1.4 Conformance keywords 4 -- 2. Normative references 4 -- 3. Definitions, acronyms and abbreviations 5 -- 3.1 Definitions 5 -- 3.2 Acronyms and abbreviations 7 -- 4. System model 8 -- 4.1 Scenario 1: Single CE/DA and single Sensor 8 -- 4.2 Scenario 2: Single CE/DA and multiple Sensors 9 -- 4.3 Scenario 3: Multiple CE/DA and single Sensor 10 -- 5. The IEEE 1900.6 reference model 11 -- 5.1 General description 11 -- 5.2 An implementation example of the IEEE 1900.6 reference model 14 -- 5.3 Service access points (SAPs) 15 -- 6. Information description 70 -- 6.1 Information categories 70 -- 6.2 Data types 73 -- 6.3 Description of sensing-related parameters 75 -- 6.4 Data representation 88 -- 7. State diagram and generic procedures 95.
7.1 State description 95 -- 7.2 State transition description 96 -- 7.3 Generic procedures 98 -- 7.4 Example procedures for use cases 101 -- Annex A (informative) Use cases 107 -- Annex B (informative) Use case classification 143 -- Annex C (informative) Implementation of distributed sensing 148 -- Annex D (informative) IEEE 1900.6 DA: Scope and usage 153 -- Annex E (informative) Analysis of available/future technologies 157 -- Annex F (informative) Bibliography 15 -- IEEE Standard for Radio Interface for White Space Dynamic Spectrum Access Radio Systems Supporting Fixed and Mobile Operation -- 1. Overview 1 -- 1.1 Scope 1 -- 1.2 Purpose 1 -- 2. Definitions, acronyms, and abbreviations 2 -- 2.1 Definitions 2 -- 2.2 Acronyms and abbreviations 2 -- 3. Reference model 3 -- 4. MAC sublayer 4 -- 4.1 Architecture of the MAC sublayer 4 -- 4.2 Type definition 4 -- 4.3 MAC frame formats 4 -- 4.4 MAC sublayer service specification 9 -- 4.5 MAC functional description 24 -- 5. PHY layer 37 -- 5.1 PHY layer service specification 37 -- 5.2 CRC method 42 -- 5.3 Channel coding (including interleaving and modulation) 42 -- 5.4 Mapping modulated symbols to carriers 47 -- 5.5 Transmitter requirements 53 -- Annex A (informative) Coexistence considerations 55.
Record Nr. UNINA-9910829922503321
Elmasry George F.  
Hoboken, New Jersey, USA : , : Wiley, , 2020
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Tactical wireless communications and networks : design concepts and challenges / / George F. Elmasry
Tactical wireless communications and networks : design concepts and challenges / / George F. Elmasry
Autore Elmasry George F.
Edizione [2nd ed.]
Pubbl/distr/stampa Chichester, West Sussex : , : John Wiley & Sons, Ltd., , 2012
Descrizione fisica 1 online resource (325 p.)
Disciplina 623.7/34
Soggetto topico Communications, Military
Wireless communication systems
ISBN 1-118-44598-8
1-118-44599-6
1-283-91734-3
1-118-44601-1
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto -- About the Author xi -- Foreword xiii -- Preface xv -- List of Acronyms xvii -- Part I THEORETICAL BASIS -- 1 Introduction 3 -- 1.1 The OSI Model 4 -- 1.2 From Network Layer to IP Layer 6 -- 1.3 Pitfall of the OSI Model 7 -- 1.4 Tactical Networks Layers 9 -- 1.5 Historical Perspective 10 -- Bibliography 11 -- 2 The Physical Layer 13 -- 2.1 Modulation 13 -- 2.1.1 Signal-in-Space (SiS) 16 -- 2.2 Signal Detection 22 -- 2.2.1 Signal Detection in Two-Dimensional Space 24 -- 2.2.2 Multidimensional Constellations for AWGN 28 -- 2.3 Non-Coherent Demodulation 29 -- 2.4 Signal Fading 29 -- 2.5 Power Spectrum 31 -- 2.6 Spread Spectrum Modulation 34 -- 2.6.1 Direct Sequence Spread Spectrum 35 -- 2.6.2 Frequency Hopping Spread Spectrum 38 -- 2.7 Concluding Remarks 40 -- 2.7.1 What Happens Before Modulation and After Demodulation? 40 -- 2.7.2 Historical Perspective 40 -- Bibliography 41 -- 3 The DLL and Information Theory in Tactical Networks 43 -- 3.1 Information Theory and Channel Capacity 43 -- 3.1.1 Uncertainty and Information 45 -- 3.1.2 Entropy 46 -- 3.1.3 Coding for a Discrete Memoryless Source 48 -- 3.1.4 Mutual Information and Discrete Channels 50 -- 3.1.5 The Binary Symmetric Channel (BSC) Model 53 -- 3.1.6 Capacity of a Discrete Channel 54 -- 3.2 Channel Coding, Error Detection, and Error Correction 57 -- 3.2.1 Hamming Distance and Probability of Bit Error in Channel Coding 58 -- 3.2.2 Overview of Linear Block Codes 60 -- 3.2.3 Convolutional Codes 62 -- 3.2.4 Concatenated Coding and Interleaving 64 -- 3.2.5 Network Coding versus Transport Layer Packet Erasure Coding 65 -- 3.3 Concluding Remarks 67 -- 3.3.1 The Role of Information Theory and Coding in Tactical Wireless Communications and Networking 67 -- 3.3.2 Historical Perspective 68 -- Appendix 3.A: Using RS Code in Tactical Networks Transport Layer 69 -- 3.A.1 The Utilized RS Code 69 -- 3.A.2 Packet Erasure Analysis 70 -- 3.A.3 Imposed Tactical Requirements 77 -- Bibliography 80 -- 4 MAC and Network Layers in Tactical Networks 83.
4.1 MAC Layer and Multiple Access Techniques 83 -- 4.2 Queuing Theory 87 -- 4.2.1 Statistical Multiplexing of Packets 87 -- 4.2.2 Queuing Models 92 -- 4.3 Concluding Remarks 106 -- 4.3.1 How Congestion Happens in Tactical Wireless Networks 106 -- 4.3.2 Historical Perspective 107 -- 4.3.3 Remarks Regarding the First Part of the Book 108 -- Bibliography 110 -- Part II THE EVOLUTION OF TACTICAL RADIOS -- 5 Non-IP Tactical Radios and the Move toward IP 113 -- 5.1 Multistep Evolution to the Global Information Grid 113 -- 5.2 Link-16 Waveform 114 -- 5.2.1 Link-16 Messages 119 -- 5.2.2 Link Layer Operations of Link-16 120 -- 5.2.3 JTIDS/LINK-16 Modulation and Coding 120 -- 5.2.4 Enhancements to Link-16 126 -- 5.2.5 Concluding Remarks on Link-16 Waveform 129 -- 5.3 EPLRS Waveform 130 -- 5.4 SINCGARS Waveform 131 -- 5.5 Tactical Internet (TI) 131 -- 5.6 IP Gateways 136 -- 5.6.1 Throughput Efficiency 136 -- 5.6.2 End-to-End Packet Loss 137 -- 5.7 Concluding Remarks 137 -- 5.7.1 What Comes after the GIG? 137 -- 5.7.2 Historical Perspective 137 -- Bibliography 138 -- 6 IP-Based Tactical Waveforms and the GIG 141 -- 6.1 Tactical GIG Notional Architecture 141 -- 6.2 Tactical GIG Waveforms 144 -- 6.2.1 Wide-Area Network Waveform (WNW) 144 -- 6.2.2 Soldier Radio Waveform (SRW) 163 -- 6.2.3 High-Band Networking Waveform (HNW) 164 -- 6.2.4 Network Centric Waveform (NCW) 165 -- 6.3 The Role of Commercial Satellite in the Tactical GIG 166 -- 6.4 Satellite Delay Analysis 166 -- 6.5 Networking at the Tactical GIG 169 -- 6.6 Historical Perspective 170 -- Bibliography 173 -- 7 Cognitive Radios 177 -- 7.1 Cognitive Radios and Spectrum Regulations 177 -- 7.2 Conceptualizing Cognitive Radios 180 -- 7.2.1 Cognitive Radio Setting (CRS) Parameters 180 -- 7.2.2 The Cognitive Engine 181 -- 7.3 Cognitive Radios in Tactical Environments 183 -- 7.4 Software Communications Architecture (SCA) 184 -- 7.4.1 The SCA Core Framework 185 -- 7.4.2 SCA Definitions 185 -- 7.4.3 SCA Components 186 -- 7.4.4 SCA and Security Architecture 188.
7.5 Spectrum Sensing 190 -- 7.5.1 Multidimensional Spectrum Awareness 190 -- 7.5.2 Complexity of Spectrum Sensing 193 -- 7.5.3 Implementation of Spectrum Sensing 195 -- 7.5.4 Cooperative Spectrum Sensing 199 -- 7.5.5 Spectrum Sensing in Current Wireless Standards 200 -- 7.6 Security in Cognitive Radios 201 -- 7.7 Concluding Remarks 201 -- 7.7.1 Development of Cognitive Radios 201 -- 7.7.2 Modeling and Simulation of Cognitive Radios 202 -- 7.7.3 Historical Perspective 202 -- Bibliography 202 -- Part III THE OPEN ARCHITECTURE MODEL -- 8 Open Architecture in Tactical Networks 207 -- 8.1 Commercial Cellular Wireless Open Architecture Model 208 -- 8.2 Tactical Wireless Open Architecture Model 210 -- 8.3 Open Architecture Tactical Protocol Stack Model 211 -- 8.3.1 Tactical Wireless Open Architecture Model Entities 213 -- 8.3.2 Open Architecture Tactical Wireless Model ICDs 216 -- 8.4 The Tactical Edge 219 -- 8.4.1 Tactical Edge Definition 219 -- 8.4.2 Tactical Edge Analysis 220 -- 8.5 Historical Perspective 222 -- Bibliography 224 -- 9 Open Architecture Details 225 -- 9.1 The Plain Text IP Layer and the Tactical Edge 225 -- 9.2 Measurement Based Resource Management 227 -- 9.2.1 Advantages and Challenges of MBRM 228 -- 9.2.2 Congestion Severity Level 229 -- 9.2.3 Markov Chain Representation of MBAC 231 -- 9.2.4 Regulating the Flow of Traffic between Two Nodes 233 -- 9.2.5 Regulating the Flow of Traffic for Multiple Nodes 233 -- 9.2.6 Packet Loss from the Physical Layer 234 -- 9.3 ICD I: Plain Text IP Layer to HAIPE 238 -- 9.4 ICD V: Plain Text IP Layer Peer-to-Peer 239 -- 9.4.1 TCP Proxy over HAIPE 239 -- 9.4.2 VoIP Proxy over HAIPE 241 -- 9.4.3 Video Proxy over HAIPE 247 -- 9.4.4 RSVP Proxy over HAIPE 248 -- 9.4.5 Multicast Proxy over HAIPE 252 -- 9.5 ICD X Cross Layer Signaling across the HAIPE 255 -- 9.6 Concluding Remarks 258 -- 9.7 Historical Perspective 258 -- Bibliography 259 -- 10 Bringing Commercial Cellular Capabilities to Tactical Networks 261 -- 10.1 Tactical User Expectations 262.
10.2 3G/4G/LTE Technologies within the War Theater 264 -- 10.3 The Tactical Cellular Gateway 265 -- 10.4 Deployment Use Cases 267 -- 10.4.1 Use Case I: Smartphone Tethered to a Soldier Radio Waveform (SRW) Radio 268 -- 10.4.2 Use Case II: 3G/4G/LTE Services on a Dismounted Unit 269 -- 10.4.3 Use Case III: 3G/4G/LTE Access at an Enclave 271 -- 10.5 Concluding Remarks 272 -- Bibliography 273 -- 11 Network Management Challenges in Tactical Networks 275 -- 11.1 Use of Policy Based Network Management and Gaming Theory in Tactical Networks 275 -- 11.2 Challenges Facing Joint Forces Interoperability 277 -- 11.3 Joint Network Management Architectural Approach 277 -- 11.3.1 Assumptions and Concepts for Operations (ConOps) 279 -- 11.3.2 The Role of Gateway Nodes 281 -- 11.3.3 Abstracting Information 282 -- 11.3.4 Creating Path Information 283 -- 11.3.5 Sequence Diagram 285 -- 11.4 Conflict Resolution for Shared Resources 286 -- 11.4.1 Tactical Network Hierarchy 287 -- 11.4.2 Dynamic Activation of NCW in WNW/NCW-Capable Nodes 287 -- 11.4.3 Interfacing between the WIN-NM and the JWNM for NCW Resources 288 -- 11.4.4 NCW Resource Attributes 289 -- 11.5 Concluding Remarks 290 -- Bibliography 291 -- Index 293.
Record Nr. UNINA-9910141534603321
Elmasry George F.  
Chichester, West Sussex : , : John Wiley & Sons, Ltd., , 2012
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Tactical wireless communications and networks : design concepts and challenges / / George F. Elmasry
Tactical wireless communications and networks : design concepts and challenges / / George F. Elmasry
Autore Elmasry George F.
Edizione [2nd ed.]
Pubbl/distr/stampa Chichester, West Sussex : , : John Wiley & Sons, Ltd., , 2012
Descrizione fisica 1 online resource (325 p.)
Disciplina 623.7/34
Soggetto topico Communications, Military
Wireless communication systems
ISBN 1-118-44598-8
1-118-44599-6
1-283-91734-3
1-118-44601-1
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto -- About the Author xi -- Foreword xiii -- Preface xv -- List of Acronyms xvii -- Part I THEORETICAL BASIS -- 1 Introduction 3 -- 1.1 The OSI Model 4 -- 1.2 From Network Layer to IP Layer 6 -- 1.3 Pitfall of the OSI Model 7 -- 1.4 Tactical Networks Layers 9 -- 1.5 Historical Perspective 10 -- Bibliography 11 -- 2 The Physical Layer 13 -- 2.1 Modulation 13 -- 2.1.1 Signal-in-Space (SiS) 16 -- 2.2 Signal Detection 22 -- 2.2.1 Signal Detection in Two-Dimensional Space 24 -- 2.2.2 Multidimensional Constellations for AWGN 28 -- 2.3 Non-Coherent Demodulation 29 -- 2.4 Signal Fading 29 -- 2.5 Power Spectrum 31 -- 2.6 Spread Spectrum Modulation 34 -- 2.6.1 Direct Sequence Spread Spectrum 35 -- 2.6.2 Frequency Hopping Spread Spectrum 38 -- 2.7 Concluding Remarks 40 -- 2.7.1 What Happens Before Modulation and After Demodulation? 40 -- 2.7.2 Historical Perspective 40 -- Bibliography 41 -- 3 The DLL and Information Theory in Tactical Networks 43 -- 3.1 Information Theory and Channel Capacity 43 -- 3.1.1 Uncertainty and Information 45 -- 3.1.2 Entropy 46 -- 3.1.3 Coding for a Discrete Memoryless Source 48 -- 3.1.4 Mutual Information and Discrete Channels 50 -- 3.1.5 The Binary Symmetric Channel (BSC) Model 53 -- 3.1.6 Capacity of a Discrete Channel 54 -- 3.2 Channel Coding, Error Detection, and Error Correction 57 -- 3.2.1 Hamming Distance and Probability of Bit Error in Channel Coding 58 -- 3.2.2 Overview of Linear Block Codes 60 -- 3.2.3 Convolutional Codes 62 -- 3.2.4 Concatenated Coding and Interleaving 64 -- 3.2.5 Network Coding versus Transport Layer Packet Erasure Coding 65 -- 3.3 Concluding Remarks 67 -- 3.3.1 The Role of Information Theory and Coding in Tactical Wireless Communications and Networking 67 -- 3.3.2 Historical Perspective 68 -- Appendix 3.A: Using RS Code in Tactical Networks Transport Layer 69 -- 3.A.1 The Utilized RS Code 69 -- 3.A.2 Packet Erasure Analysis 70 -- 3.A.3 Imposed Tactical Requirements 77 -- Bibliography 80 -- 4 MAC and Network Layers in Tactical Networks 83.
4.1 MAC Layer and Multiple Access Techniques 83 -- 4.2 Queuing Theory 87 -- 4.2.1 Statistical Multiplexing of Packets 87 -- 4.2.2 Queuing Models 92 -- 4.3 Concluding Remarks 106 -- 4.3.1 How Congestion Happens in Tactical Wireless Networks 106 -- 4.3.2 Historical Perspective 107 -- 4.3.3 Remarks Regarding the First Part of the Book 108 -- Bibliography 110 -- Part II THE EVOLUTION OF TACTICAL RADIOS -- 5 Non-IP Tactical Radios and the Move toward IP 113 -- 5.1 Multistep Evolution to the Global Information Grid 113 -- 5.2 Link-16 Waveform 114 -- 5.2.1 Link-16 Messages 119 -- 5.2.2 Link Layer Operations of Link-16 120 -- 5.2.3 JTIDS/LINK-16 Modulation and Coding 120 -- 5.2.4 Enhancements to Link-16 126 -- 5.2.5 Concluding Remarks on Link-16 Waveform 129 -- 5.3 EPLRS Waveform 130 -- 5.4 SINCGARS Waveform 131 -- 5.5 Tactical Internet (TI) 131 -- 5.6 IP Gateways 136 -- 5.6.1 Throughput Efficiency 136 -- 5.6.2 End-to-End Packet Loss 137 -- 5.7 Concluding Remarks 137 -- 5.7.1 What Comes after the GIG? 137 -- 5.7.2 Historical Perspective 137 -- Bibliography 138 -- 6 IP-Based Tactical Waveforms and the GIG 141 -- 6.1 Tactical GIG Notional Architecture 141 -- 6.2 Tactical GIG Waveforms 144 -- 6.2.1 Wide-Area Network Waveform (WNW) 144 -- 6.2.2 Soldier Radio Waveform (SRW) 163 -- 6.2.3 High-Band Networking Waveform (HNW) 164 -- 6.2.4 Network Centric Waveform (NCW) 165 -- 6.3 The Role of Commercial Satellite in the Tactical GIG 166 -- 6.4 Satellite Delay Analysis 166 -- 6.5 Networking at the Tactical GIG 169 -- 6.6 Historical Perspective 170 -- Bibliography 173 -- 7 Cognitive Radios 177 -- 7.1 Cognitive Radios and Spectrum Regulations 177 -- 7.2 Conceptualizing Cognitive Radios 180 -- 7.2.1 Cognitive Radio Setting (CRS) Parameters 180 -- 7.2.2 The Cognitive Engine 181 -- 7.3 Cognitive Radios in Tactical Environments 183 -- 7.4 Software Communications Architecture (SCA) 184 -- 7.4.1 The SCA Core Framework 185 -- 7.4.2 SCA Definitions 185 -- 7.4.3 SCA Components 186 -- 7.4.4 SCA and Security Architecture 188.
7.5 Spectrum Sensing 190 -- 7.5.1 Multidimensional Spectrum Awareness 190 -- 7.5.2 Complexity of Spectrum Sensing 193 -- 7.5.3 Implementation of Spectrum Sensing 195 -- 7.5.4 Cooperative Spectrum Sensing 199 -- 7.5.5 Spectrum Sensing in Current Wireless Standards 200 -- 7.6 Security in Cognitive Radios 201 -- 7.7 Concluding Remarks 201 -- 7.7.1 Development of Cognitive Radios 201 -- 7.7.2 Modeling and Simulation of Cognitive Radios 202 -- 7.7.3 Historical Perspective 202 -- Bibliography 202 -- Part III THE OPEN ARCHITECTURE MODEL -- 8 Open Architecture in Tactical Networks 207 -- 8.1 Commercial Cellular Wireless Open Architecture Model 208 -- 8.2 Tactical Wireless Open Architecture Model 210 -- 8.3 Open Architecture Tactical Protocol Stack Model 211 -- 8.3.1 Tactical Wireless Open Architecture Model Entities 213 -- 8.3.2 Open Architecture Tactical Wireless Model ICDs 216 -- 8.4 The Tactical Edge 219 -- 8.4.1 Tactical Edge Definition 219 -- 8.4.2 Tactical Edge Analysis 220 -- 8.5 Historical Perspective 222 -- Bibliography 224 -- 9 Open Architecture Details 225 -- 9.1 The Plain Text IP Layer and the Tactical Edge 225 -- 9.2 Measurement Based Resource Management 227 -- 9.2.1 Advantages and Challenges of MBRM 228 -- 9.2.2 Congestion Severity Level 229 -- 9.2.3 Markov Chain Representation of MBAC 231 -- 9.2.4 Regulating the Flow of Traffic between Two Nodes 233 -- 9.2.5 Regulating the Flow of Traffic for Multiple Nodes 233 -- 9.2.6 Packet Loss from the Physical Layer 234 -- 9.3 ICD I: Plain Text IP Layer to HAIPE 238 -- 9.4 ICD V: Plain Text IP Layer Peer-to-Peer 239 -- 9.4.1 TCP Proxy over HAIPE 239 -- 9.4.2 VoIP Proxy over HAIPE 241 -- 9.4.3 Video Proxy over HAIPE 247 -- 9.4.4 RSVP Proxy over HAIPE 248 -- 9.4.5 Multicast Proxy over HAIPE 252 -- 9.5 ICD X Cross Layer Signaling across the HAIPE 255 -- 9.6 Concluding Remarks 258 -- 9.7 Historical Perspective 258 -- Bibliography 259 -- 10 Bringing Commercial Cellular Capabilities to Tactical Networks 261 -- 10.1 Tactical User Expectations 262.
10.2 3G/4G/LTE Technologies within the War Theater 264 -- 10.3 The Tactical Cellular Gateway 265 -- 10.4 Deployment Use Cases 267 -- 10.4.1 Use Case I: Smartphone Tethered to a Soldier Radio Waveform (SRW) Radio 268 -- 10.4.2 Use Case II: 3G/4G/LTE Services on a Dismounted Unit 269 -- 10.4.3 Use Case III: 3G/4G/LTE Access at an Enclave 271 -- 10.5 Concluding Remarks 272 -- Bibliography 273 -- 11 Network Management Challenges in Tactical Networks 275 -- 11.1 Use of Policy Based Network Management and Gaming Theory in Tactical Networks 275 -- 11.2 Challenges Facing Joint Forces Interoperability 277 -- 11.3 Joint Network Management Architectural Approach 277 -- 11.3.1 Assumptions and Concepts for Operations (ConOps) 279 -- 11.3.2 The Role of Gateway Nodes 281 -- 11.3.3 Abstracting Information 282 -- 11.3.4 Creating Path Information 283 -- 11.3.5 Sequence Diagram 285 -- 11.4 Conflict Resolution for Shared Resources 286 -- 11.4.1 Tactical Network Hierarchy 287 -- 11.4.2 Dynamic Activation of NCW in WNW/NCW-Capable Nodes 287 -- 11.4.3 Interfacing between the WIN-NM and the JWNM for NCW Resources 288 -- 11.4.4 NCW Resource Attributes 289 -- 11.5 Concluding Remarks 290 -- Bibliography 291 -- Index 293.
Record Nr. UNINA-9910809728603321
Elmasry George F.  
Chichester, West Sussex : , : John Wiley & Sons, Ltd., , 2012
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui