top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
The internet of things : key applications and protocols / / Olivier Hersent, David Boswarthick, Omar Elloumi
The internet of things : key applications and protocols / / Olivier Hersent, David Boswarthick, Omar Elloumi
Autore Hersent Olivier
Edizione [1st edition]
Pubbl/distr/stampa Chichester, West Sussex : , : Wiley, , 2012
Descrizione fisica 1 online resource (xxv, 344 pages)
Disciplina 681/.2
Altri autori (Persone) BoswarthickDavid
ElloumiOmar
Soggetto topico Intelligent buildings
Smart power grids
Sensor networks
ISBN 1-119-95834-2
9786613409751
1-283-40975-5
1-119-95835-0
1-119-96670-1
Classificazione TEC041000
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto List of Acronyms xv -- Introduction xxiii -- Part I M2M AREA NETWORK PHYSICAL LAYERS -- 1 IEEE 802.15.4 3 -- 1.1 The IEEE 802 Committee Family of Protocols 3 -- 1.2 The Physical Layer 3 -- 1.2.1 Interferences with Other Technologies 5 -- 1.2.2 Choice of a 802.15.4 Communication Channel, Energy Detection, Link Quality Information 7 -- 1.2.3 Sending a Data Frame 8 -- 1.3 The Media-Access Control Layer 8 -- 1.3.1 802.15.4 Reduced Function and Full Function Devices, Coordinators, and the PAN Coordinator 9 -- 1.3.2 Association 12 -- 1.3.3 802.15.4 Addresses 13 -- 1.3.4 802.15.4 Frame Format 13 -- 1.3.5 Security 14 -- 1.4 Uses of 802.15.4 16 -- 1.5 The Future of 802.15.4: 802.15.4e and 802.15.4g 17 -- 1.5.1 802.15.4e 17 -- 1.5.2 802.15.4g 21 -- 2 Powerline Communication for M2M Applications 23 -- 2.1 Overview of PLC Technologies 23 -- 2.2 PLC Landscape 23 -- 2.2.1 The Historical Period (1950 / 2000) 24 -- 2.2.2 After Year 2000: The Maturity of PLC 24 -- 2.3 Powerline Communication: A Constrained Media 27 -- 2.3.1 Powerline is a Difficult Channel 27 -- 2.3.2 Regulation Limitations 27 -- 2.3.3 Power Consumption 32 -- 2.3.4 Lossy Network 33 -- 2.3.5 Powerline is a Shared Media and Coexistence is not an Optional / Feature 35 -- 2.4 The Ideal PLC System for M2M 37 -- 2.4.1 Openness and Availability 38 -- 2.4.2 Range 38 -- 2.4.3 Power Consumption 38 -- 2.4.4 Data Rate 39 -- 2.4.5 Robustness 39 -- 2.4.6 EMC Regulatory Compliance 40 -- 2.4.7 Coexistence 40 -- 2.4.8 Security 40 -- 2.4.9 Latency 40 -- 2.4.10 Interoperability with M2M Wireless Services 40 -- 2.5 Conclusion 40 -- References 41 -- Part II LEGACY M2M PROTOCOLS FOR SENSOR NETWORKS, / BUILDING AUTOMATION AND HOME AUTOMATION -- 3 The BACnetTM Protocol 45 -- 3.1 Standardization 45 -- 3.1.1 United States 46 -- 3.1.2 Europe 46 -- 3.1.3 Interworking 46 -- 3.2 Technology 46 -- 3.2.1 Physical Layer 47 -- 3.2.2 Link Layer 47 -- 3.2.3 Network Layer 47 -- 3.2.4 Transport and Session Layers 49 -- 3.2.5 Presentation and Application Layers 49.
3.3 BACnet Security 55 -- 3.4 BACnet Over Web Services (Annex N, Annex H6) 55 -- 3.4.1 The Generic WS Model 56 -- 3.4.2 BACnet/WS Services 58 -- 3.4.3 The Web Services Profile for BACnet Objects 59 -- 3.4.4 Future Improvements 59 -- 4 The LonWorks R Control Networking Platform 61 -- 4.1 Standardization 61 -- 4.1.1 United States of America 61 -- 4.1.2 Europe 62 -- 4.1.3 China 62 -- 4.2 Technology 62 -- 4.2.1 Physical Layer 63 -- 4.2.2 Link Layer 64 -- 4.2.3 Network Layer 65 -- 4.2.4 Transport Layer 66 -- 4.2.5 Session Layer 67 -- 4.2.6 Presentation Layer 67 -- 4.2.7 Application Layer 71 -- 4.3 Web Services Interface for LonWorks Networks: Echelon SmartServer 72 -- 4.4 A REST Interface for LonWorks 73 -- 4.4.1 LonBridge REST Transactions 74 -- 4.4.2 Requests 74 -- 4.4.3 Responses 75 -- 4.4.4 LonBridge REST Resources 75 -- 5 ModBus 79 -- 5.1 Introduction 79 -- 5.2 ModBus Standardization 80 -- 5.3 ModBus Message Framing and Transmission Modes 80 -- 5.4 ModBus/TCP 81 -- 6 KNX 83 -- 6.1 The Konnex/KNX Association 83 -- 6.2 Standardization 83 -- 6.3 KNX Technology Overview 84 -- 6.3.1 Physical Layer 84 -- 6.3.2 Data Link and Routing Layers, Addressing 87 -- 6.3.3 Transport Layer 89 -- 6.3.4 Application Layer 89 -- 6.3.5 KNX Devices, Functional Blocks and Interworking 89 -- 6.4 Device Configuration 92 -- 7 ZigBee 93 -- 7.1 Development of the Standard 93 -- 7.2 ZigBee Architecture 94 -- 7.2.1 ZigBee and 802.15.4 94 -- 7.2.2 ZigBee Protocol Layers 94 -- 7.2.3 ZigBee Node Types 96 -- 7.3 Association 96 -- 7.3.1 Forming a Network 96 -- 7.3.2 Joining a Parent Node in a Network Using 802.15.4 Association 97 -- 7.3.3 Using NWK Rejoin 99 -- 7.4 The ZigBee Network Layer 99 -- 7.4.1 Short-Address Allocation 99 -- 7.4.2 Network Layer Frame Format 100 -- 7.4.3 Packet Forwarding 101 -- 7.4.4 Routing Support Primitives 101 -- 7.4.5 Routing Algorithms 102 -- 7.5 The ZigBee APS Layer 105 -- 7.5.1 Endpoints, Descriptors 106 -- 7.5.2 The APS Frame 106 -- 7.6 The ZigBee Device Object (ZDO) and the ZigBee Device Profile (ZDP) 109.
7.6.1 ZDP Device and Service Discovery Services (Mandatory) 109 -- 7.6.2 ZDP Network Management Services (Mandatory) 110 -- 7.6.3 ZDP Binding Management Services (Optional) 111 -- 7.6.4 Group Management 111 -- 7.7 ZigBee Security 111 -- 7.7.1 ZigBee and 802.15.4 Security 111 -- 7.7.2 Key Types 113 -- 7.7.3 The Trust Center 114 -- 7.7.4 The ZDO Permissions Table 116 -- 7.8 The ZigBee Cluster Library (ZCL) 116 -- 7.8.1 Cluster 116 -- 7.8.2 Attributes 117 -- 7.8.3 Commands 117 -- 7.8.4 ZCL Frame 117 -- 7.9 ZigBee Application Profiles 119 -- 7.9.1 The Home Automation (HA) Application Profile 119 -- 7.9.2 ZigBee Smart Energy 1.0 (ZSE or AMI) 122 -- 7.10 The ZigBee Gateway Specification for Network Devices 129 -- 7.10.1 The ZGD 130 -- 7.10.2 GRIP Binding 131 -- 7.10.3 SOAP Binding 132 -- 7.10.4 REST Binding 132 -- 7.10.5 Example IPHA / ZGD Interaction Using the REST Binding 134 -- 8 Z-Wave 139 -- 8.1 History and Management of the Protocol 139 -- 8.2 The Z-Wave Protocol 140 -- 8.2.1 Overview 140 -- 8.2.2 Z-Wave Node Types 140 -- 8.2.3 RF and MAC Layers 142 -- 8.2.4 Transfer Layer 143 -- 8.2.5 Routing Layer 145 -- 8.2.6 Application Layer 148 -- Part III LEGACY M2M PROTOCOLS FOR UTILITY METERING / 9 M-Bus and Wireless M-Bus 155 -- 9.1 Development of the Standard 155 -- 9.2 M-Bus Architecture 156 -- 9.2.1 Physical Layer 156 -- 9.2.2 Link Layer 156 -- 9.2.3 Network Layer 157 -- 9.2.4 Application Layer 158 -- 9.3 Wireless M-Bus 160 -- 9.3.1 Physical Layer 160 -- 9.3.2 Data-Link Layer 162 -- 9.3.3 Application Layer 162 -- 9.3.4 Security 163 -- 10 The ANSI C12 Suite 165 -- 10.1 Introduction 165 -- 10.2 C12.19: The C12 Data Model 166 -- 10.2.1 The Read and Write Minimum Services 167 -- 10.2.2 Some Remarkable C12.19 Tables 167 -- 10.3 C12.18: Basic Point-to-Point Communication Over an Optical Port 168 -- 10.4 C12.21: An Extension of C12.18 for Modem Communication 169 -- 10.4.1 Interactions with the Data-Link Layer 170 -- 10.4.2 Modifications and Additions to C12.19 Tables 171 -- 10.5 C12.22: C12.19 Tables Transport Over Any Networking Communication / System 171.
10.5.1 Reference Topology and Network Elements 171 -- 10.5.2 C12.22 Node to C12.22 Network Communications 173 -- 10.5.3 C12.22 Device to C12.22 Communication Module Interface 174 -- 10.5.4 C12.19 Updates 176 -- 10.6 Other Parts of ANSI C12 Protocol Suite 176 -- 10.7 RFC 6142: C12.22 Transport Over an IP Network 176 -- 10.8 REST-Based Interfaces to C12.19 177 -- 11 DLMS/COSEM 179 -- 11.1 DLMS Standardization 179 -- 11.1.1 The DLMS UA 179 -- 11.1.2 DLMS/COSEM, the Colored Books 179 -- 11.1.3 DLMS Standardization in IEC 180 -- 11.2 The COSEM Data Model 181 -- 11.3 The Object Identification System (OBIS) 182 -- 11.4 The DLMS/COSEM Interface Classes 184 -- 11.4.1 Data-Storage ICs 185 -- 11.4.2 Association ICs 185 -- 11.4.3 Time- and Event-Bound ICs 186 -- 11.4.4 Communication Setup Channel Objects 186 -- 11.5 Accessing COSEM Interface Objects 186 -- 11.5.1 The Application Association Concept 186 -- 11.5.2 The DLMS/COSEM Communication Framework 187 -- 11.5.3 The Data Communication Services of COSEM Application Layer 189 -- 11.6 End-to-End Security in the DLMS/COSEM Approach 191 -- 11.6.1 Access Control Security 191 -- 11.6.2 Data-Transport Security 192 -- Part IV THE NEXT GENERATION: IP-BASED PROTOCOLS -- 12 6LoWPAN and RPL 195 -- 12.1 Overview 195 -- 12.2 What is 6LoWPAN? 6LoWPAN and RPL Standardization 195 -- 12.3 Overview of the 6LoWPAN Adaptation Layer 196 -- 12.3.1 Mesh Addressing Header 197 -- 12.3.2 Fragment Header 198 -- 12.3.3 IPv6 Compression Header 198 -- 12.4 Context-Based Compression: IPHC 200 -- 12.5 RPL 202 -- 12.5.1 RPL Control Messages 204 -- 12.5.2 Construction of the DODAG and Upward Routes 204 -- 12.6 Downward Routes, Multicast Membership 206 -- 12.7 Packet Routing 207 -- 12.7.1 RPL Security 208 -- 13 ZigBee Smart Energy 2.0 209 -- 13.1 REST Overview 209 -- 13.1.1 Uniform Interfaces, REST Resources and Resource Identifiers 209 -- 13.1.2 REST Verbs 210 -- 13.1.3 Other REST Constraints, and What is REST After All? 211 -- 13.2 ZigBee SEP 2.0 Overview 212.
13.2.1 ZigBee IP 213 -- 13.2.2 ZigBee SEP 2.0 Resources 214 -- 13.3 Function Sets and Device Types 217 -- 13.3.1 Base Function Set 218 -- 13.3.2 Group Enrollment 221 -- 13.3.3 Meter 223 -- 13.3.4 Pricing 223 -- 13.3.5 Demand Response and Load Control Function Set 224 -- 13.3.6 Distributed Energy Resources 227 -- 13.3.7 Plug-In Electric Vehicle 227 -- 13.3.8 Messaging 230 -- 13.3.9 Registration 231 -- 13.4 ZigBee SE 2.0 Security 232 -- 13.4.1 Certificates 232 -- 13.4.2 IP Level Security 232 -- 13.4.3 Application-Level Security 235 -- 14 The ETSI M2M Architecture 237 -- 14.1 Introduction to ETSI TC M2M 237 -- 14.2 System Architecture 238 -- 14.2.1 High-Level Architecture 238 -- 14.2.2 Reference Points 239 -- 14.2.3 Service Capabilities 240 -- 14.3 ETSI M2M SCL Resource Structure 242 -- 14.3.1 SCL Resources 244 -- 14.3.2 Application Resources 244 -- 14.3.3 Access Right Resources 248 -- 14.3.4 Container Resources 248 -- 14.3.5 Group Resources 250 -- 14.3.6 Subscription and Notification Channel Resources 251 -- 14.4 ETSI M2M Interactions Overview 252 -- 14.5 Security in the ETSI M2M Framework 252 -- 14.5.1 Key Management 252 -- 14.5.2 Access Lists 254 -- 14.6 Interworking with Machine Area Networks 255 -- 14.6.1 Mapping M2M Networks to ETSI M2M Resources 256 -- 14.6.2 Interworking with ZigBee 1.0 257 -- 14.6.3 Interworking with C.12 262 -- 14.6.4 Interworking with DLMS/COSEM 264 -- 14.7 Conclusion on ETSI M2M 266 -- Part V KEY APPLICATIONS OF THE INTERNET OF THINGS -- 15 The Smart Grid 271 -- 15.1 Introduction 271 -- 15.2 The Marginal Cost of Electricity: Base and Peak Production 272 -- 15.3 Managing Demand: The Next Challenge of Electricity Operators . . . and / Why M2M Will Become a Key Technology 273 -- 15.4 Demand Response for Transmission System Operators (TSO) 274 -- 15.4.1 Grid-Balancing Authorities: The TSOs 274 -- 15.4.2 Power Shedding: Who Pays What? 276 -- 15.4.3 Automated Demand Response 277 -- 15.5 Case Study: RTE in France 277 -- 15.5.1 The Public-Network Stabilization and Balancing Mechanisms in France 277.
15.5.2 The Bidding Mechanisms of the Tertiary Adjustment Reserve 281 -- 15.5.3 Who Pays for the Network-Balancing Costs? 283 -- 15.6 The Opportunity of Smart Distributed Energy Management 285 -- 15.6.1 Assessing the Potential of Residential and Small-Business Powerz Shedding (Heating/Cooling Control) 286 -- 15.6.2 Analysis of a Typical Home 287 -- 15.6.3 The Business Case 293 -- 15.7 Demand Response: The Big Picture 300 -- 15.7.1 From Network Balancing to Peak-Demand Suppression 300 -- 15.7.2 Demand Response Beyond Heating Systems 304 -- 15.8 Conclusion: The Business Case of Demand Response and Demand Shifting is a Key Driver for the Deployment of the Internet of Things 305 -- 16 Electric Vehicle Charging 307 -- 16.1 Charging Standards Overview 307 -- 16.1.1 IEC Standards Related to EV Charging 310 -- 16.1.2 SAE Standards 317 -- 16.1.3 J2293 318 -- 16.1.4 CAN / Bus 319 -- 16.1.5 J2847: The New “Recommended Practice” for High-Level / Communication Leveraging the ZigBee Smart Energy Profile 2.0 320 -- 16.2 Use Cases 321 -- 16.2.1 Basic Use Cases 321 -- 16.2.2 A More Complex Use Case: Thermal Preconditioning of the Car 323 -- 16.3 Conclusion 324 -- Appendix A Normal Aggregate Power Demand of a Set of Identical / Heating Systems with Hysteresis 327 -- Appendix B Effect of a Decrease of Tref. The Danger of Correlation 329 -- Appendix C Changing Tref without Introducing Correlation 331 -- C.1 Effect of an Increase of Tref 331 -- Appendix D Lower Consumption, A Side Benefit of Power Shedding 333 -- Index 337.
Record Nr. UNINA-9910208829103321
Hersent Olivier  
Chichester, West Sussex : , : Wiley, , 2012
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
The internet of things : applications to the smart grid and building automation / / Olivier Hersent, David Boswarthick, Omar Elloumi
The internet of things : applications to the smart grid and building automation / / Olivier Hersent, David Boswarthick, Omar Elloumi
Autore Hersent Olivier
Edizione [1st edition]
Pubbl/distr/stampa Hoboken, NJ, : Wiley, 2012
Descrizione fisica 1 online resource (xxv, 344 pages)
Disciplina 681/.2
Altri autori (Persone) BoswarthickDavid
ElloumiOmar
Soggetto topico Intelligent buildings
Smart power grids
Sensor networks
ISBN 9786613409751
9781119958345
1119958342
9781283409759
1283409755
9781119958352
1119958350
9781119966708
1119966701
Classificazione TEC041000
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto List of Acronyms xv -- Introduction xxiii -- Part I M2M AREA NETWORK PHYSICAL LAYERS -- 1 IEEE 802.15.4 3 -- 1.1 The IEEE 802 Committee Family of Protocols 3 -- 1.2 The Physical Layer 3 -- 1.2.1 Interferences with Other Technologies 5 -- 1.2.2 Choice of a 802.15.4 Communication Channel, Energy Detection, Link Quality Information 7 -- 1.2.3 Sending a Data Frame 8 -- 1.3 The Media-Access Control Layer 8 -- 1.3.1 802.15.4 Reduced Function and Full Function Devices, Coordinators, and the PAN Coordinator 9 -- 1.3.2 Association 12 -- 1.3.3 802.15.4 Addresses 13 -- 1.3.4 802.15.4 Frame Format 13 -- 1.3.5 Security 14 -- 1.4 Uses of 802.15.4 16 -- 1.5 The Future of 802.15.4: 802.15.4e and 802.15.4g 17 -- 1.5.1 802.15.4e 17 -- 1.5.2 802.15.4g 21 -- 2 Powerline Communication for M2M Applications 23 -- 2.1 Overview of PLC Technologies 23 -- 2.2 PLC Landscape 23 -- 2.2.1 The Historical Period (1950 / 2000) 24 -- 2.2.2 After Year 2000: The Maturity of PLC 24 -- 2.3 Powerline Communication: A Constrained Media 27 -- 2.3.1 Powerline is a Difficult Channel 27 -- 2.3.2 Regulation Limitations 27 -- 2.3.3 Power Consumption 32 -- 2.3.4 Lossy Network 33 -- 2.3.5 Powerline is a Shared Media and Coexistence is not an Optional / Feature 35 -- 2.4 The Ideal PLC System for M2M 37 -- 2.4.1 Openness and Availability 38 -- 2.4.2 Range 38 -- 2.4.3 Power Consumption 38 -- 2.4.4 Data Rate 39 -- 2.4.5 Robustness 39 -- 2.4.6 EMC Regulatory Compliance 40 -- 2.4.7 Coexistence 40 -- 2.4.8 Security 40 -- 2.4.9 Latency 40 -- 2.4.10 Interoperability with M2M Wireless Services 40 -- 2.5 Conclusion 40 -- References 41 -- Part II LEGACY M2M PROTOCOLS FOR SENSOR NETWORKS, / BUILDING AUTOMATION AND HOME AUTOMATION -- 3 The BACnetTM Protocol 45 -- 3.1 Standardization 45 -- 3.1.1 United States 46 -- 3.1.2 Europe 46 -- 3.1.3 Interworking 46 -- 3.2 Technology 46 -- 3.2.1 Physical Layer 47 -- 3.2.2 Link Layer 47 -- 3.2.3 Network Layer 47 -- 3.2.4 Transport and Session Layers 49 -- 3.2.5 Presentation and Application Layers 49.
3.3 BACnet Security 55 -- 3.4 BACnet Over Web Services (Annex N, Annex H6) 55 -- 3.4.1 The Generic WS Model 56 -- 3.4.2 BACnet/WS Services 58 -- 3.4.3 The Web Services Profile for BACnet Objects 59 -- 3.4.4 Future Improvements 59 -- 4 The LonWorks R Control Networking Platform 61 -- 4.1 Standardization 61 -- 4.1.1 United States of America 61 -- 4.1.2 Europe 62 -- 4.1.3 China 62 -- 4.2 Technology 62 -- 4.2.1 Physical Layer 63 -- 4.2.2 Link Layer 64 -- 4.2.3 Network Layer 65 -- 4.2.4 Transport Layer 66 -- 4.2.5 Session Layer 67 -- 4.2.6 Presentation Layer 67 -- 4.2.7 Application Layer 71 -- 4.3 Web Services Interface for LonWorks Networks: Echelon SmartServer 72 -- 4.4 A REST Interface for LonWorks 73 -- 4.4.1 LonBridge REST Transactions 74 -- 4.4.2 Requests 74 -- 4.4.3 Responses 75 -- 4.4.4 LonBridge REST Resources 75 -- 5 ModBus 79 -- 5.1 Introduction 79 -- 5.2 ModBus Standardization 80 -- 5.3 ModBus Message Framing and Transmission Modes 80 -- 5.4 ModBus/TCP 81 -- 6 KNX 83 -- 6.1 The Konnex/KNX Association 83 -- 6.2 Standardization 83 -- 6.3 KNX Technology Overview 84 -- 6.3.1 Physical Layer 84 -- 6.3.2 Data Link and Routing Layers, Addressing 87 -- 6.3.3 Transport Layer 89 -- 6.3.4 Application Layer 89 -- 6.3.5 KNX Devices, Functional Blocks and Interworking 89 -- 6.4 Device Configuration 92 -- 7 ZigBee 93 -- 7.1 Development of the Standard 93 -- 7.2 ZigBee Architecture 94 -- 7.2.1 ZigBee and 802.15.4 94 -- 7.2.2 ZigBee Protocol Layers 94 -- 7.2.3 ZigBee Node Types 96 -- 7.3 Association 96 -- 7.3.1 Forming a Network 96 -- 7.3.2 Joining a Parent Node in a Network Using 802.15.4 Association 97 -- 7.3.3 Using NWK Rejoin 99 -- 7.4 The ZigBee Network Layer 99 -- 7.4.1 Short-Address Allocation 99 -- 7.4.2 Network Layer Frame Format 100 -- 7.4.3 Packet Forwarding 101 -- 7.4.4 Routing Support Primitives 101 -- 7.4.5 Routing Algorithms 102 -- 7.5 The ZigBee APS Layer 105 -- 7.5.1 Endpoints, Descriptors 106 -- 7.5.2 The APS Frame 106 -- 7.6 The ZigBee Device Object (ZDO) and the ZigBee Device Profile (ZDP) 109.
7.6.1 ZDP Device and Service Discovery Services (Mandatory) 109 -- 7.6.2 ZDP Network Management Services (Mandatory) 110 -- 7.6.3 ZDP Binding Management Services (Optional) 111 -- 7.6.4 Group Management 111 -- 7.7 ZigBee Security 111 -- 7.7.1 ZigBee and 802.15.4 Security 111 -- 7.7.2 Key Types 113 -- 7.7.3 The Trust Center 114 -- 7.7.4 The ZDO Permissions Table 116 -- 7.8 The ZigBee Cluster Library (ZCL) 116 -- 7.8.1 Cluster 116 -- 7.8.2 Attributes 117 -- 7.8.3 Commands 117 -- 7.8.4 ZCL Frame 117 -- 7.9 ZigBee Application Profiles 119 -- 7.9.1 The Home Automation (HA) Application Profile 119 -- 7.9.2 ZigBee Smart Energy 1.0 (ZSE or AMI) 122 -- 7.10 The ZigBee Gateway Specification for Network Devices 129 -- 7.10.1 The ZGD 130 -- 7.10.2 GRIP Binding 131 -- 7.10.3 SOAP Binding 132 -- 7.10.4 REST Binding 132 -- 7.10.5 Example IPHA / ZGD Interaction Using the REST Binding 134 -- 8 Z-Wave 139 -- 8.1 History and Management of the Protocol 139 -- 8.2 The Z-Wave Protocol 140 -- 8.2.1 Overview 140 -- 8.2.2 Z-Wave Node Types 140 -- 8.2.3 RF and MAC Layers 142 -- 8.2.4 Transfer Layer 143 -- 8.2.5 Routing Layer 145 -- 8.2.6 Application Layer 148 -- Part III LEGACY M2M PROTOCOLS FOR UTILITY METERING / 9 M-Bus and Wireless M-Bus 155 -- 9.1 Development of the Standard 155 -- 9.2 M-Bus Architecture 156 -- 9.2.1 Physical Layer 156 -- 9.2.2 Link Layer 156 -- 9.2.3 Network Layer 157 -- 9.2.4 Application Layer 158 -- 9.3 Wireless M-Bus 160 -- 9.3.1 Physical Layer 160 -- 9.3.2 Data-Link Layer 162 -- 9.3.3 Application Layer 162 -- 9.3.4 Security 163 -- 10 The ANSI C12 Suite 165 -- 10.1 Introduction 165 -- 10.2 C12.19: The C12 Data Model 166 -- 10.2.1 The Read and Write Minimum Services 167 -- 10.2.2 Some Remarkable C12.19 Tables 167 -- 10.3 C12.18: Basic Point-to-Point Communication Over an Optical Port 168 -- 10.4 C12.21: An Extension of C12.18 for Modem Communication 169 -- 10.4.1 Interactions with the Data-Link Layer 170 -- 10.4.2 Modifications and Additions to C12.19 Tables 171 -- 10.5 C12.22: C12.19 Tables Transport Over Any Networking Communication / System 171.
10.5.1 Reference Topology and Network Elements 171 -- 10.5.2 C12.22 Node to C12.22 Network Communications 173 -- 10.5.3 C12.22 Device to C12.22 Communication Module Interface 174 -- 10.5.4 C12.19 Updates 176 -- 10.6 Other Parts of ANSI C12 Protocol Suite 176 -- 10.7 RFC 6142: C12.22 Transport Over an IP Network 176 -- 10.8 REST-Based Interfaces to C12.19 177 -- 11 DLMS/COSEM 179 -- 11.1 DLMS Standardization 179 -- 11.1.1 The DLMS UA 179 -- 11.1.2 DLMS/COSEM, the Colored Books 179 -- 11.1.3 DLMS Standardization in IEC 180 -- 11.2 The COSEM Data Model 181 -- 11.3 The Object Identification System (OBIS) 182 -- 11.4 The DLMS/COSEM Interface Classes 184 -- 11.4.1 Data-Storage ICs 185 -- 11.4.2 Association ICs 185 -- 11.4.3 Time- and Event-Bound ICs 186 -- 11.4.4 Communication Setup Channel Objects 186 -- 11.5 Accessing COSEM Interface Objects 186 -- 11.5.1 The Application Association Concept 186 -- 11.5.2 The DLMS/COSEM Communication Framework 187 -- 11.5.3 The Data Communication Services of COSEM Application Layer 189 -- 11.6 End-to-End Security in the DLMS/COSEM Approach 191 -- 11.6.1 Access Control Security 191 -- 11.6.2 Data-Transport Security 192 -- Part IV THE NEXT GENERATION: IP-BASED PROTOCOLS -- 12 6LoWPAN and RPL 195 -- 12.1 Overview 195 -- 12.2 What is 6LoWPAN? 6LoWPAN and RPL Standardization 195 -- 12.3 Overview of the 6LoWPAN Adaptation Layer 196 -- 12.3.1 Mesh Addressing Header 197 -- 12.3.2 Fragment Header 198 -- 12.3.3 IPv6 Compression Header 198 -- 12.4 Context-Based Compression: IPHC 200 -- 12.5 RPL 202 -- 12.5.1 RPL Control Messages 204 -- 12.5.2 Construction of the DODAG and Upward Routes 204 -- 12.6 Downward Routes, Multicast Membership 206 -- 12.7 Packet Routing 207 -- 12.7.1 RPL Security 208 -- 13 ZigBee Smart Energy 2.0 209 -- 13.1 REST Overview 209 -- 13.1.1 Uniform Interfaces, REST Resources and Resource Identifiers 209 -- 13.1.2 REST Verbs 210 -- 13.1.3 Other REST Constraints, and What is REST After All? 211 -- 13.2 ZigBee SEP 2.0 Overview 212.
13.2.1 ZigBee IP 213 -- 13.2.2 ZigBee SEP 2.0 Resources 214 -- 13.3 Function Sets and Device Types 217 -- 13.3.1 Base Function Set 218 -- 13.3.2 Group Enrollment 221 -- 13.3.3 Meter 223 -- 13.3.4 Pricing 223 -- 13.3.5 Demand Response and Load Control Function Set 224 -- 13.3.6 Distributed Energy Resources 227 -- 13.3.7 Plug-In Electric Vehicle 227 -- 13.3.8 Messaging 230 -- 13.3.9 Registration 231 -- 13.4 ZigBee SE 2.0 Security 232 -- 13.4.1 Certificates 232 -- 13.4.2 IP Level Security 232 -- 13.4.3 Application-Level Security 235 -- 14 The ETSI M2M Architecture 237 -- 14.1 Introduction to ETSI TC M2M 237 -- 14.2 System Architecture 238 -- 14.2.1 High-Level Architecture 238 -- 14.2.2 Reference Points 239 -- 14.2.3 Service Capabilities 240 -- 14.3 ETSI M2M SCL Resource Structure 242 -- 14.3.1 SCL Resources 244 -- 14.3.2 Application Resources 244 -- 14.3.3 Access Right Resources 248 -- 14.3.4 Container Resources 248 -- 14.3.5 Group Resources 250 -- 14.3.6 Subscription and Notification Channel Resources 251 -- 14.4 ETSI M2M Interactions Overview 252 -- 14.5 Security in the ETSI M2M Framework 252 -- 14.5.1 Key Management 252 -- 14.5.2 Access Lists 254 -- 14.6 Interworking with Machine Area Networks 255 -- 14.6.1 Mapping M2M Networks to ETSI M2M Resources 256 -- 14.6.2 Interworking with ZigBee 1.0 257 -- 14.6.3 Interworking with C.12 262 -- 14.6.4 Interworking with DLMS/COSEM 264 -- 14.7 Conclusion on ETSI M2M 266 -- Part V KEY APPLICATIONS OF THE INTERNET OF THINGS -- 15 The Smart Grid 271 -- 15.1 Introduction 271 -- 15.2 The Marginal Cost of Electricity: Base and Peak Production 272 -- 15.3 Managing Demand: The Next Challenge of Electricity Operators . . . and / Why M2M Will Become a Key Technology 273 -- 15.4 Demand Response for Transmission System Operators (TSO) 274 -- 15.4.1 Grid-Balancing Authorities: The TSOs 274 -- 15.4.2 Power Shedding: Who Pays What? 276 -- 15.4.3 Automated Demand Response 277 -- 15.5 Case Study: RTE in France 277 -- 15.5.1 The Public-Network Stabilization and Balancing Mechanisms in France 277.
15.5.2 The Bidding Mechanisms of the Tertiary Adjustment Reserve 281 -- 15.5.3 Who Pays for the Network-Balancing Costs? 283 -- 15.6 The Opportunity of Smart Distributed Energy Management 285 -- 15.6.1 Assessing the Potential of Residential and Small-Business Powerz Shedding (Heating/Cooling Control) 286 -- 15.6.2 Analysis of a Typical Home 287 -- 15.6.3 The Business Case 293 -- 15.7 Demand Response: The Big Picture 300 -- 15.7.1 From Network Balancing to Peak-Demand Suppression 300 -- 15.7.2 Demand Response Beyond Heating Systems 304 -- 15.8 Conclusion: The Business Case of Demand Response and Demand Shifting is a Key Driver for the Deployment of the Internet of Things 305 -- 16 Electric Vehicle Charging 307 -- 16.1 Charging Standards Overview 307 -- 16.1.1 IEC Standards Related to EV Charging 310 -- 16.1.2 SAE Standards 317 -- 16.1.3 J2293 318 -- 16.1.4 CAN / Bus 319 -- 16.1.5 J2847: The New “Recommended Practice” for High-Level / Communication Leveraging the ZigBee Smart Energy Profile 2.0 320 -- 16.2 Use Cases 321 -- 16.2.1 Basic Use Cases 321 -- 16.2.2 A More Complex Use Case: Thermal Preconditioning of the Car 323 -- 16.3 Conclusion 324 -- Appendix A Normal Aggregate Power Demand of a Set of Identical / Heating Systems with Hysteresis 327 -- Appendix B Effect of a Decrease of Tref. The Danger of Correlation 329 -- Appendix C Changing Tref without Introducing Correlation 331 -- C.1 Effect of an Increase of Tref 331 -- Appendix D Lower Consumption, A Side Benefit of Power Shedding 333 -- Index 337.
Record Nr. UNINA-9910816235303321
Hersent Olivier  
Hoboken, NJ, : Wiley, 2012
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
M2M communications : a systems approach / / editors, David Boswarthick, Omar Elloumi, Olivier Hersent
M2M communications : a systems approach / / editors, David Boswarthick, Omar Elloumi, Olivier Hersent
Edizione [1st edition]
Pubbl/distr/stampa Chichester, West Sussex, U.K. : , : Wiley, , 2012
Descrizione fisica 1 online resource (334 p.)
Disciplina 621.39/8
Altri autori (Persone) BoswarthickDavid
ElloumiOmar
HersentOlivier
Soggetto topico Machine-to-machine communications
ISBN 1-280-58851-9
9786613618344
1-119-97403-8
1-119-97404-6
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Foreword -- List of Contributors -- List of Acronyms -- 1 Introduction to M2M -- 1.1 What is M2M? -- 1.2 The Business of M2M -- 1.3 Accelerating M2M Maturity -- 1.3.1 High-Level M2M Frameworks -- 1.3.2 Policy and Government Incentives -- 1.4 M2M Standards -- 1.4.1 Which Standards for M2M? -- 1.5 Roadmap of the Book -- References -- Part I M2M CURRENT LANDSCAPE -- 2 The Business of M2M -- 2.1 The M2M Market -- 2.1.1 Healthcare -- 2.1.2 Transportation -- 2.1.3 Energy -- 2.2 The M2M Market Adoption: Drivers and Barriers -- 2.3 The M2M Value Chain -- 2.4 Market Size Projections -- 2.5 Business Models -- 2.5.1 Network Operator- or CSP-Led Model -- 2.5.2 MVNO-Led Model -- 2.5.3 Corporate Customer-Led Model -- 2.6 M2M Business Metrics -- 2.7 Market Evolution -- Reference -- 3 Lessons Learned from Early M2M Deployments -- 3.1 Introduction -- 3.2 Early M2M Operational Deployments -- 3.2.1 Introduction -- 3.2.2 Early M2M Operational Deployment Examples -- 3.2.3 Common Questions in Early M2M Deployments -- 3.2.4 Possible Optimization of M2M Deployments -- 3.3 Chapter Conclusion -- Reference -- Part II M2M ARCHITECTURE AND PROTOCOLS -- 4 M2M Requirements and High-Level Architectural Principles -- 4.1 Introduction -- 4.2 Use-Case-Driven Approach to M2M Requirements -- 4.2.1 What is a Use Case? -- 4.2.2 ETSI M2M Work on Use Cases -- 4.2.3 Methodology for Developing Use Cases -- 4.3 Smart Metering Approach in ETSI M2M -- 4.3.1 Introduction -- 4.3.2 Typical Smart Metering Deployment Scenario -- 4.4 eHealth Approach in ETSI M2M -- 4.4.1 Introduction -- 4.5 ETSI M2M Service Requirements: High-Level Summary and Applicability to Different Market Segments -- 4.6 Traffic Models-/Characteristics-Approach to M2M Requirements and Considerations for Network Architecture Design -- 4.6.1 Why Focus on Wireless Networks? -- 4.7 Description of M2M Market Segments/Applications -- 4.7.1 Automotive -- 4.7.2 Smart Telemetry -- 4.7.3 Surveillance and Security -- 4.7.4 Point of Sale (PoS) -- 4.7.5 Vending Machines.
4.7.6 eHealth -- 4.7.7 Live Video -- 4.7.8 Building Automation -- 4.7.9 M2M Industrial Automation -- 4.8 M2M Traffic Characterization -- 4.8.1 Detailed Traffic Characterization for Smart Metering -- 4.8.2 Global Traffic Characterization -- 4.9 High-Level Architecture Principles for M2M Communications -- 4.10 Chapter Conclusions -- References -- 5 ETSI M2M Services Architecture -- 5.1 Introduction -- 5.2 High-Level System Architecture -- 5.3 ETSI TC M2M Service Capabilities Framework -- 5.4 ETSI TC M2M Release 1 Scenarios -- 5.5 ETSI M2M Service Capabilities -- 5.5.1 Reachability, Addressing, and Repository Capability (xRAR) -- 5.5.2 Remote Entity Management Capability (x REM) -- 5.5.3 Security Capability (xSEC) -- 5.6 Introducing REST Architectural Style for M2M -- 5.6.1 Introduction to REST -- 5.6.2 Why REST for M2M? -- 5.6.3 REST Basics -- 5.6.4 Applying REST to M2M -- 5.6.5 Additional Functionalities -- 5.7 ETSI TC M2M Resource-Based M2M Communication and Procedures -- 5.7.1 Introduction -- 5.7.2 Definitions Used in this Section -- 5.7.3 Resource Structure -- 5.7.4 Interface Procedures -- 5.8 Chapter Conclusion -- References -- 6 M2M Optimizations in Public Mobile Networks -- 6.1 Chapter Overview -- 6.2 M2M over a Telecommunications Network -- 6.2.1 Introduction -- 6.2.2 M2M Communication Scenarios -- 6.2.3 Mobile or Fixed Networks -- 6.2.4 Data Connections for M2M Applications -- 6.3 Network Optimizations for M2M -- 6.3.1 Introduction -- 6.3.2 3GPP Standardization of Network Improvements for Machine Type Communications -- 6.3.3 Cost Reduction -- 6.3.4 M2M Value-Added Services -- 6.3.5 Numbering, Identifiers, and Addressing -- 6.3.6 Triggering Optimizations -- 6.3.7 Overload and Congestion Control -- References -- 7 The Role of IP in M2M -- 7.1 Introduction -- 7.1.1 IPv6 in Brief -- 7.1.2 Neighbor Discovery Protocol -- 7.2 IPv6 for M2M -- 7.3 6LoWPAN -- 7.3.1 Framework -- 7.3.2 Header Compression -- 7.3.3 Neighbor Discovery -- 7.4 Routing Protocol for Low-Power and Lossy Networks (RPL).
7.4.1 RPL Topology -- 7.5 CoRE -- 7.5.1 Message Formats -- 7.5.2 Transport Protocol -- 7.5.3 REST Architecture -- References -- 8 M2M Security -- 8.1 Introduction -- 8.1.1 Security Characteristics of Cellular M2M -- 8.2 Trust Relationships in the M2M Ecosystem -- 8.3 Security Requirements -- 8.3.1 Customer/M2M Device User -- 8.3.2 Access Network Provider -- 8.3.3 M2M Service Provider -- 8.3.4 Application Provider -- 8.3.5 Bootstrapping Requirements -- 8.4 Which Types of Solutions are Suitable? -- 8.4.1 Approaches Against Hijacking -- 8.4.2 Public Key Solutions -- 8.4.3 Smart Card-Based Solutions -- 8.4.4 Methods Based on Pre-Provisioned Symmetric Keys -- 8.4.5 Protocol for Automated Bootstrapping Based on Identity-Based Encryption -- 8.4.6 Security for Groups of M2M Devices -- 8.5 Standardization Efforts on Securing M2M and MTC Communications -- 8.5.1 ETSI M2M Security -- 8.5.2 3GPP Security Related to Network Improvements for Machine Type Communications -- References -- 9 M2M Terminals and Modules -- 9.1 M2M Module Categorization -- 9.1.1 Access Technology -- 9.1.2 Physical Form Factors -- 9.2 Hardware Interfaces -- 9.2.1 Power Interface -- 9.2.2 USB (Universal Serial Bus) Interface -- 9.2.3 UART (Universal Asynchronous Receiver/ Transmitter) Interface -- 9.2.4 Antenna Interface -- 9.2.5 UICC (Universal Integrated Circuit Card) Interface -- 9.2.6 GPIO (General-Purpose Input/Output Port) Interface -- 9.2.7 SPI (Serial Peripheral Interface) Interface -- 9.2.8 I2C (Inter-Integrated Circuit Bus) Interface -- 9.2.9 ADC (Analog-to-Digital Converter) Interface -- 9.2.10 PCM (Pulse Code Modulation) Interface -- 9.2.11 PWM (Pulse Width Modulation) Interface -- 9.2.12 Analog Audio Interface -- 9.3 Temperature and Durability -- 9.4 Services -- 9.4.1 Application Execution Environment -- 9.4.2 Connectivity Services -- 9.4.3 Management Services -- 9.4.4 Application Services -- 9.5 Software Interface -- 9.5.1 AT Commands -- 9.5.2 SDK Interface -- 9.6 Cellular Certification -- 9.6.1 Telecom Industry Certification.
9.6.2 MNO Certification -- 10 Smart Cards in M2M Communication -- 10.1 Introduction -- 10.2 Security and Privacy Issues in M2M Communication -- 10.3 The Grounds for Hardware-Based Security Solutions -- 10.4 Independent Secure Elements and Trusted Environments -- 10.4.1 Trusted Environments in M2M Devices -- 10.4.2 Trusting Unknown Devices: The Need for Security Certification -- 10.4.3 Advantages of the Smart Card Model -- 10.5 Specific Smart Card Properties for M2M Environments -- 10.5.1 Removable Smart Cards versus Embedded Secure Elements -- 10.5.2 UICC Resistance to Environmental Constraints -- 10.5.3 Adapting the Card Application Toolkit to Unattended Devices -- 10.5.4 Reaching UICC Peripheral Devices with Toolkit Commands -- 10.5.5 Confidential Remote Management of Third-Party Applications -- 10.6 Smart Card Future Evolutions in M2M Environments -- 10.6.1 UICC-Based M2M Service Identity Module Application -- 10.6.2 Internet Protocol Integration of the UICC -- 10.7 Remote Administration of M2M Secure Elements -- 10.7.1 Overview -- 10.7.2 Late Personalization of Subscription -- 10.7.3 Remote Management of Subscriptions on the Field -- References -- Part III BOOK CONCLUSIONS AND FUTURE VISION -- 11 Conclusions -- Index.
Record Nr. UNINA-9910141291603321
Chichester, West Sussex, U.K. : , : Wiley, , 2012
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
M2M communications : a systems approach / / editors, David Boswarthick, Omar Elloumi, Olivier Hersent
M2M communications : a systems approach / / editors, David Boswarthick, Omar Elloumi, Olivier Hersent
Edizione [1st edition]
Pubbl/distr/stampa Chichester, West Sussex, U.K. : , : Wiley, , 2012
Descrizione fisica 1 online resource (334 p.)
Disciplina 621.39/8
Altri autori (Persone) BoswarthickDavid
ElloumiOmar
HersentOlivier
Soggetto topico Machine-to-machine communications
ISBN 1-280-58851-9
9786613618344
1-119-97403-8
1-119-97404-6
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Foreword -- List of Contributors -- List of Acronyms -- 1 Introduction to M2M -- 1.1 What is M2M? -- 1.2 The Business of M2M -- 1.3 Accelerating M2M Maturity -- 1.3.1 High-Level M2M Frameworks -- 1.3.2 Policy and Government Incentives -- 1.4 M2M Standards -- 1.4.1 Which Standards for M2M? -- 1.5 Roadmap of the Book -- References -- Part I M2M CURRENT LANDSCAPE -- 2 The Business of M2M -- 2.1 The M2M Market -- 2.1.1 Healthcare -- 2.1.2 Transportation -- 2.1.3 Energy -- 2.2 The M2M Market Adoption: Drivers and Barriers -- 2.3 The M2M Value Chain -- 2.4 Market Size Projections -- 2.5 Business Models -- 2.5.1 Network Operator- or CSP-Led Model -- 2.5.2 MVNO-Led Model -- 2.5.3 Corporate Customer-Led Model -- 2.6 M2M Business Metrics -- 2.7 Market Evolution -- Reference -- 3 Lessons Learned from Early M2M Deployments -- 3.1 Introduction -- 3.2 Early M2M Operational Deployments -- 3.2.1 Introduction -- 3.2.2 Early M2M Operational Deployment Examples -- 3.2.3 Common Questions in Early M2M Deployments -- 3.2.4 Possible Optimization of M2M Deployments -- 3.3 Chapter Conclusion -- Reference -- Part II M2M ARCHITECTURE AND PROTOCOLS -- 4 M2M Requirements and High-Level Architectural Principles -- 4.1 Introduction -- 4.2 Use-Case-Driven Approach to M2M Requirements -- 4.2.1 What is a Use Case? -- 4.2.2 ETSI M2M Work on Use Cases -- 4.2.3 Methodology for Developing Use Cases -- 4.3 Smart Metering Approach in ETSI M2M -- 4.3.1 Introduction -- 4.3.2 Typical Smart Metering Deployment Scenario -- 4.4 eHealth Approach in ETSI M2M -- 4.4.1 Introduction -- 4.5 ETSI M2M Service Requirements: High-Level Summary and Applicability to Different Market Segments -- 4.6 Traffic Models-/Characteristics-Approach to M2M Requirements and Considerations for Network Architecture Design -- 4.6.1 Why Focus on Wireless Networks? -- 4.7 Description of M2M Market Segments/Applications -- 4.7.1 Automotive -- 4.7.2 Smart Telemetry -- 4.7.3 Surveillance and Security -- 4.7.4 Point of Sale (PoS) -- 4.7.5 Vending Machines.
4.7.6 eHealth -- 4.7.7 Live Video -- 4.7.8 Building Automation -- 4.7.9 M2M Industrial Automation -- 4.8 M2M Traffic Characterization -- 4.8.1 Detailed Traffic Characterization for Smart Metering -- 4.8.2 Global Traffic Characterization -- 4.9 High-Level Architecture Principles for M2M Communications -- 4.10 Chapter Conclusions -- References -- 5 ETSI M2M Services Architecture -- 5.1 Introduction -- 5.2 High-Level System Architecture -- 5.3 ETSI TC M2M Service Capabilities Framework -- 5.4 ETSI TC M2M Release 1 Scenarios -- 5.5 ETSI M2M Service Capabilities -- 5.5.1 Reachability, Addressing, and Repository Capability (xRAR) -- 5.5.2 Remote Entity Management Capability (x REM) -- 5.5.3 Security Capability (xSEC) -- 5.6 Introducing REST Architectural Style for M2M -- 5.6.1 Introduction to REST -- 5.6.2 Why REST for M2M? -- 5.6.3 REST Basics -- 5.6.4 Applying REST to M2M -- 5.6.5 Additional Functionalities -- 5.7 ETSI TC M2M Resource-Based M2M Communication and Procedures -- 5.7.1 Introduction -- 5.7.2 Definitions Used in this Section -- 5.7.3 Resource Structure -- 5.7.4 Interface Procedures -- 5.8 Chapter Conclusion -- References -- 6 M2M Optimizations in Public Mobile Networks -- 6.1 Chapter Overview -- 6.2 M2M over a Telecommunications Network -- 6.2.1 Introduction -- 6.2.2 M2M Communication Scenarios -- 6.2.3 Mobile or Fixed Networks -- 6.2.4 Data Connections for M2M Applications -- 6.3 Network Optimizations for M2M -- 6.3.1 Introduction -- 6.3.2 3GPP Standardization of Network Improvements for Machine Type Communications -- 6.3.3 Cost Reduction -- 6.3.4 M2M Value-Added Services -- 6.3.5 Numbering, Identifiers, and Addressing -- 6.3.6 Triggering Optimizations -- 6.3.7 Overload and Congestion Control -- References -- 7 The Role of IP in M2M -- 7.1 Introduction -- 7.1.1 IPv6 in Brief -- 7.1.2 Neighbor Discovery Protocol -- 7.2 IPv6 for M2M -- 7.3 6LoWPAN -- 7.3.1 Framework -- 7.3.2 Header Compression -- 7.3.3 Neighbor Discovery -- 7.4 Routing Protocol for Low-Power and Lossy Networks (RPL).
7.4.1 RPL Topology -- 7.5 CoRE -- 7.5.1 Message Formats -- 7.5.2 Transport Protocol -- 7.5.3 REST Architecture -- References -- 8 M2M Security -- 8.1 Introduction -- 8.1.1 Security Characteristics of Cellular M2M -- 8.2 Trust Relationships in the M2M Ecosystem -- 8.3 Security Requirements -- 8.3.1 Customer/M2M Device User -- 8.3.2 Access Network Provider -- 8.3.3 M2M Service Provider -- 8.3.4 Application Provider -- 8.3.5 Bootstrapping Requirements -- 8.4 Which Types of Solutions are Suitable? -- 8.4.1 Approaches Against Hijacking -- 8.4.2 Public Key Solutions -- 8.4.3 Smart Card-Based Solutions -- 8.4.4 Methods Based on Pre-Provisioned Symmetric Keys -- 8.4.5 Protocol for Automated Bootstrapping Based on Identity-Based Encryption -- 8.4.6 Security for Groups of M2M Devices -- 8.5 Standardization Efforts on Securing M2M and MTC Communications -- 8.5.1 ETSI M2M Security -- 8.5.2 3GPP Security Related to Network Improvements for Machine Type Communications -- References -- 9 M2M Terminals and Modules -- 9.1 M2M Module Categorization -- 9.1.1 Access Technology -- 9.1.2 Physical Form Factors -- 9.2 Hardware Interfaces -- 9.2.1 Power Interface -- 9.2.2 USB (Universal Serial Bus) Interface -- 9.2.3 UART (Universal Asynchronous Receiver/ Transmitter) Interface -- 9.2.4 Antenna Interface -- 9.2.5 UICC (Universal Integrated Circuit Card) Interface -- 9.2.6 GPIO (General-Purpose Input/Output Port) Interface -- 9.2.7 SPI (Serial Peripheral Interface) Interface -- 9.2.8 I2C (Inter-Integrated Circuit Bus) Interface -- 9.2.9 ADC (Analog-to-Digital Converter) Interface -- 9.2.10 PCM (Pulse Code Modulation) Interface -- 9.2.11 PWM (Pulse Width Modulation) Interface -- 9.2.12 Analog Audio Interface -- 9.3 Temperature and Durability -- 9.4 Services -- 9.4.1 Application Execution Environment -- 9.4.2 Connectivity Services -- 9.4.3 Management Services -- 9.4.4 Application Services -- 9.5 Software Interface -- 9.5.1 AT Commands -- 9.5.2 SDK Interface -- 9.6 Cellular Certification -- 9.6.1 Telecom Industry Certification.
9.6.2 MNO Certification -- 10 Smart Cards in M2M Communication -- 10.1 Introduction -- 10.2 Security and Privacy Issues in M2M Communication -- 10.3 The Grounds for Hardware-Based Security Solutions -- 10.4 Independent Secure Elements and Trusted Environments -- 10.4.1 Trusted Environments in M2M Devices -- 10.4.2 Trusting Unknown Devices: The Need for Security Certification -- 10.4.3 Advantages of the Smart Card Model -- 10.5 Specific Smart Card Properties for M2M Environments -- 10.5.1 Removable Smart Cards versus Embedded Secure Elements -- 10.5.2 UICC Resistance to Environmental Constraints -- 10.5.3 Adapting the Card Application Toolkit to Unattended Devices -- 10.5.4 Reaching UICC Peripheral Devices with Toolkit Commands -- 10.5.5 Confidential Remote Management of Third-Party Applications -- 10.6 Smart Card Future Evolutions in M2M Environments -- 10.6.1 UICC-Based M2M Service Identity Module Application -- 10.6.2 Internet Protocol Integration of the UICC -- 10.7 Remote Administration of M2M Secure Elements -- 10.7.1 Overview -- 10.7.2 Late Personalization of Subscription -- 10.7.3 Remote Management of Subscriptions on the Field -- References -- Part III BOOK CONCLUSIONS AND FUTURE VISION -- 11 Conclusions -- Index.
Record Nr. UNINA-9910827010803321
Chichester, West Sussex, U.K. : , : Wiley, , 2012
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui

Opere

Altro...

Lingua di pubblicazione

Altro...

Data

Data di pubblicazione

Altro...