top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Smart grid and enabling technologies / / Shady S. Refaat, Texas A&M University at Qatar, Doha, Qatar, Omar Ellabban, CSA Catapult Innovation Centre, Newport, UK, Sertac Bayhan, Qatar Environment and Energy Research Institute, Hamad bin Khalifa University, Doha, Qatar, Haitham Abu-Rub, Texas A&M University at Qatar, Doha, Qatar, Frede Blaabjerg, Aalborg University, Aalborg, Denmark, Miroslav M. Begovic, Texas A&M University, College Station, USA
Smart grid and enabling technologies / / Shady S. Refaat, Texas A&M University at Qatar, Doha, Qatar, Omar Ellabban, CSA Catapult Innovation Centre, Newport, UK, Sertac Bayhan, Qatar Environment and Energy Research Institute, Hamad bin Khalifa University, Doha, Qatar, Haitham Abu-Rub, Texas A&M University at Qatar, Doha, Qatar, Frede Blaabjerg, Aalborg University, Aalborg, Denmark, Miroslav M. Begovic, Texas A&M University, College Station, USA
Autore Refaat Shady S.
Pubbl/distr/stampa Hoboken, New Jersey : , : Wiley, , [2021]
Descrizione fisica 1 online resource (510 pages)
Disciplina 621.31
Collana IEEE Press Ser.
Soggetto topico Smart power grids
Soggetto genere / forma Electronic books.
ISBN 1-119-42245-0
1-119-42246-9
1-119-42243-4
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Cover -- Title Page -- Copyright Page -- Contents -- About the Authors -- Acknowledgments -- Preface -- List of Abbreviations -- Chapter 1 Smart Grid Architecture Overview -- 1.1 Introduction -- 1.2 Fundamentals of a Current Electric Power System -- 1.2.1 Electrical Power Generation -- 1.2.2 Electric Power Transmission -- 1.2.3 Electric Power Distribution -- 1.3 Limitations of the Traditional Power Grid -- 1.3.1 Lack of Circuit Capacity and Aging Assets -- 1.3.2 Operation Constraints -- 1.3.3 Self-Healing Grid -- 1.3.4 Respond to National Initiatives -- 1.4 Smart Grid Definition -- 1.5 Smart Grid Elements -- 1.5.1 Distributed Generation -- 1.5.2 Energy Storage -- 1.5.3 Demand Response -- 1.5.4 Integrated Communications -- 1.5.4.1 Communication Networks -- 1.5.4.2 Power Line Communication (PLC) -- 1.5.5 Customer Engagement -- 1.5.6 Sensors and PMU Units -- 1.5.7 Smart Meters and Advanced Metering Infrastructure -- 1.6 Smart Grid Control -- 1.7 Smart Grid Characteristics -- 1.7.1 Flexibility -- 1.7.2 Improved Efficiency -- 1.7.3 Smart Transportation -- 1.7.4 Demand Response Support -- 1.7.5 Reliability and Power Quality -- 1.7.6 Market‐Enabling -- 1.8 Transformation from Traditional Grid to Smart Grid -- 1.8.1 The Necessity for Paradigm Shift to SG -- 1.8.2 Basic Stages of the Transformation to SG -- 1.9 Smart Grid Enabling Technologies -- 1.9.1 Electrification -- 1.9.2 Decentralization -- 1.9.3 Digitalization and Technologies -- 1.10 Actions for Shifting toward Smart Grid Paradigm -- 1.10.1 Stages for Grid Modernization -- 1.10.2 When a Grid Becomes Smart Grid -- 1.11 Highlights on Smart Grid Benefits -- 1.12 Smart Grid Challenges -- 1.12.1 Accessibility and Acceptability -- 1.12.2 Accountability -- 1.12.3 Controllability -- 1.12.4 Interoperability -- 1.12.5 Interchangeability -- 1.12.6 Maintainability -- 1.12.7 Optimality -- 1.12.8 Security.
1.12.9 Upgradability -- 1.13 Smart Grid Cost -- 1.14 Organization of the Book -- References -- Chapter 2 Renewable Energy: Overview, Opportunities and Challenges -- 2.1 Introduction -- 2.2 Description of Renewable Energy Sources -- 2.2.1 Bioenergy Energy -- 2.2.2 Geothermal Energy -- 2.2.3 Hydropower Energy -- 2.2.4 Marine Energy -- 2.2.5 Solar Energy -- 2.2.5.1 Photovoltaic -- 2.2.5.2 Concentrated Solar Power -- 2.2.5.3 Solar Thermal Heating and Cooling -- 2.2.6 Wind Energy -- 2.3 Renewable Energy: Growth, Investment, Benefits and Deployment -- 2.4 Smart Grid Enable Renewables -- 2.5 Conclusion -- References -- Chapter 3 Power Electronics Converters for Distributed Generation -- 3.1 An Overview of Distributed Generation Systems with Power Electronics -- 3.1.1 Photovoltaic Technology -- 3.1.2 Wind Power Technology -- 3.1.3 Energy Storage Systems -- 3.2 Power Electronics for Grid-Connected AC Smart Grid -- 3.2.1 Voltage-Source Converters -- 3.2.1.1 Synchronous Reference Frame -- 3.2.1.2 Stationary Reference Frame -- 3.2.1.3 Grid Synchronization -- 3.2.1.4 Virtual Synchronous Generator Operation -- 3.2.2 Multilevel Power Converters -- 3.3 Power Electronics Enabled Autonomous AC Power Systems -- 3.3.1 Converter Level Controls in Microgrids -- 3.3.1.1 Master-slave Operation -- 3.3.1.2 f-P and V-Q Droops -- 3.3.1.3 V-P and f-Q Droops -- 3.3.1.4 Virtual Impedance Enabled Control -- 3.3.2 System Level Coordination Control -- 3.4 Power Electronics Enabled Autonomous DC Power Systems -- 3.4.1 Converter Level Controls -- 3.4.1.1 V-P and V-I Droop Control -- 3.4.1.2 Virtual Impedance Enabled Control -- 3.4.1.3 Extended Droop Control -- 3.4.1.4 Adaptative Droop Control in DC Microgrids -- 3.4.2 System Level Coordination Control -- 3.4.2.1 Centralized Control Scheme -- 3.4.2.2 Distributed Control Scheme -- 3.5 Conclusion -- References.
Chapter 4 Energy Storage Systems as an Enabling Technology for the Smart Grid -- 4.1 Introduction -- 4.2 Structure of Energy Storage System -- 4.3 Energy Storage Systems Classification and Description -- 4.4 Current State of Energy Storage Technologies -- 4.5 Techno-Economic Characteristics of Energy Storage Systems -- 4.6 Selection of Energy Storage Technology for Certain Application -- 4.7 Energy Storage Applications -- 4.8 Barriers to the Deployment of Energy Storage -- 4.9 Energy Storage Roadmap -- 4.10 Conclusion -- References -- Chapter 5 Microgrids: State-of-the-Art and Future Challenges -- 5.1 Introduction -- 5.2 DC Versus AC Microgrid -- 5.2.1 LVAC and LVDC Networks -- 5.2.2 AC Microgrid -- 5.2.3 DC Microgrid -- 5.3 Microgrid Design -- 5.3.1 Methodology for the Microgrid Design -- 5.3.2 Design Considerations -- 5.4 Microgrid Control -- 5.4.1 Primary Control Level -- 5.4.1.1 Droop-Based Control -- 5.4.1.2 Communication-Based Control -- 5.4.2 Secondary Control Level -- 5.4.3 Tertiary Control Level -- 5.5 Microgrid Economics -- 5.5.1 Capacity Planning -- 5.5.2 Operations Modeling -- 5.5.3 Financial Modeling -- 5.5.4 Barriers to Realizing Microgrids -- 5.6 Operation of Multi-Microgrids -- 5.7 Microgrid Benefits -- 5.7.1 Economic Benefits -- 5.7.2 Technical Benefits -- 5.7.3 Environmental Benefits -- 5.8 Challenges -- 5.9 Conclusion -- References -- Chapter 6 Smart Transportation -- 6.1 Introduction -- 6.2 Electric Vehicle Topologies -- 6.2.1 Battery EVs -- 6.2.2 Plug-in Hybrid EVs -- 6.2.3 Hybrid EVs -- 6.2.4 Fuel-Cell EVs -- 6.3 Powertrain Architectures -- 6.3.1 Series HEV Architecture -- 6.3.2 Parallel HEV Architecture -- 6.3.3 Series-Parallel HEV Architecture -- 6.4 Battery Technology -- 6.4.1 Battery Parameters -- 6.4.2 Common Battery Chemistries -- 6.5 Battery Charger Technology -- 6.5.1 Charging Rates and Options -- 6.5.2 Wireless Charging.
6.6 Vehicle to Grid (V2G) Concept -- 6.6.1 Unidirectional V2G -- 6.6.2 Bidirectional V2G -- 6.7 Barriers to EV Adoption -- 6.7.1 Technological Problems -- 6.7.2 Social Problems -- 6.7.3 Economic Problems -- 6.8 Trends and Future Developments -- 6.9 Conclusion -- References -- Chapter 7 Net Zero Energy Buildings -- 7.1 Introduction -- 7.2 Net Zero Energy Building Definition -- 7.3 Net Zero Energy Building Design -- 7.4 Net Zero Energy Building: Modeling, Controlling and Optimization -- 7.5 Net Zero Energy Community -- 7.6 Net Zero Energy Building: Trends, Benefits, Barriers and Efficiency Investments -- 7.7 Conclusion -- References -- Chapter 8 Smart Grid Communication Infrastructures -- 8.1 Introduction -- 8.2 Advanced Metering Infrastructure -- 8.3 Smart Grid Communications -- 8.3.1 Challenges of SG Communications -- 8.3.2 Requirements of SG Communications -- 8.3.3 Architecture of SG Communication -- 8.3.4 SG Communication Technologies -- 8.4 Conclusion -- References -- Chapter 9 Smart Grid Information Security -- 9.1 Introduction -- 9.2 Smart Grid Layers -- 9.2.1 The Power System Layer -- 9.2.2 The Information Layer -- 9.2.3 The Communication Layer -- 9.3 Attacking Smart Grid Network Communication -- 9.3.1 Physical Layer Attacks -- 9.3.2 Data Injection and Replay Attacks -- 9.3.3 Network-Based Attacks -- 9.4 Design of Cyber Secure and Resilient Industrial Control Systems -- 9.4.1 Resilient Industrial Control Systems -- 9.4.2 Areas of Resilience -- 9.4.2.1 Human Systems -- 9.4.2.2 Cyber Security -- 9.4.2.3 Complex Networks and Networked Control Systems -- 9.5 Cyber Security Challenges in Smart Grid -- 9.6 Adopting an Smart Grid Security Architecture Methodology -- 9.6.1 SG Security Objectives -- 9.6.2 Cyber Security Requirements -- 9.6.2.1 Attack Detection and Resilience Operations -- 9.6.2.2 Identification, and Access Control.
9.6.2.3 Secure and Efficient Communication Protocols -- 9.7 Validating Your Smart Grid -- 9.8 Threats and Impacts: Consumers and Utility Companies -- 9.9 Governmental Effort to Secure Smart Grids -- 9.10 Conclusion -- References -- Chapter 10 Data Management in Smart Grid -- 10.1 Introduction -- 10.2 Sources of Data in Smart Grid -- 10.3 Big Data Era -- 10.4 Tools to Manage Big Data -- 10.4.1 Apache Hadoop -- 10.4.2 Not Only SQL (NoSQL) -- 10.4.3 Microsoft HDInsight -- 10.4.4 Hadoop MapReduce -- 10.4.5 Cassandra -- 10.4.6 Storm -- 10.4.7 Hive -- 10.4.8 Plotly -- 10.4.9 Talend -- 10.4.10 Bokeh -- 10.4.11 Cloudera -- 10.5 Big Data Integration, Frameworks, and Data Bases -- 10.6 Building the Foundation for Big Data Processing -- 10.6.1 Big Data Management Platform -- 10.6.1.1 Acquisition and Recording -- 10.6.1.2 Extraction, Cleaning, and Prediction -- 10.6.1.3 Big Data Integration -- 10.6.2 Big Data Analytics Platform -- 10.6.2.1 Modeling and Analysis -- 10.6.2.2 Interpretation -- 10.7 Transforming Big Data for High Value Action -- 10.7.1 Decide What to Produce -- 10.7.2 Source the Raw Materials -- 10.7.3 Produce Insights with Speed -- 10.7.4 Deliver the Goods and Act -- 10.8 Privacy Information Impacts on Smart Grid -- 10.9 Meter Data Management for Smart Grid -- 10.10 Summary -- References -- Chapter 11 Demand-Management -- 11.1 Introduction -- 11.2 Demand Response -- 11.3 Demand Response Programs -- 11.3.1 Load-Response Programs -- 11.3.2 Price Response Programs -- 11.4 End-User Engagement -- 11.5 Challenges of DR within Smart Grid -- 11.6 Demand-Side Management -- 11.7 DSM Techniques -- 11.8 DSM Evaluation -- 11.9 Demand Response Applications -- 11.10 Summary -- References -- Chapter 12 Business Models for the Smart Grid -- 12.1 The Business Model Concept -- 12.2 The Electricity Value Chain -- 12.3 Electricity Markets.
12.4 Review of the Previous Proposed Smart Grid Business Models.
Record Nr. UNINA-9910555130103321
Refaat Shady S.  
Hoboken, New Jersey : , : Wiley, , [2021]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Smart grid and enabling technologies / / Shady S. Refaat, Texas A&M University at Qatar, Doha, Qatar, Omar Ellabban, CSA Catapult Innovation Centre, Newport, UK, Sertac Bayhan, Qatar Environment and Energy Research Institute, Hamad bin Khalifa University, Doha, Qatar, Haitham Abu-Rub, Texas A&M University at Qatar, Doha, Qatar, Frede Blaabjerg, Aalborg University, Aalborg, Denmark, Miroslav M. Begovic, Texas A&M University, College Station, USA
Smart grid and enabling technologies / / Shady S. Refaat, Texas A&M University at Qatar, Doha, Qatar, Omar Ellabban, CSA Catapult Innovation Centre, Newport, UK, Sertac Bayhan, Qatar Environment and Energy Research Institute, Hamad bin Khalifa University, Doha, Qatar, Haitham Abu-Rub, Texas A&M University at Qatar, Doha, Qatar, Frede Blaabjerg, Aalborg University, Aalborg, Denmark, Miroslav M. Begovic, Texas A&M University, College Station, USA
Autore Refaat Shady S.
Pubbl/distr/stampa Hoboken, New Jersey : , : Wiley, , [2021]
Descrizione fisica 1 online resource (510 pages)
Disciplina 621.31
Collana IEEE Press
Soggetto topico Smart power grids
ISBN 1-119-42245-0
1-119-42246-9
1-119-42243-4
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Cover -- Title Page -- Copyright Page -- Contents -- About the Authors -- Acknowledgments -- Preface -- List of Abbreviations -- Chapter 1 Smart Grid Architecture Overview -- 1.1 Introduction -- 1.2 Fundamentals of a Current Electric Power System -- 1.2.1 Electrical Power Generation -- 1.2.2 Electric Power Transmission -- 1.2.3 Electric Power Distribution -- 1.3 Limitations of the Traditional Power Grid -- 1.3.1 Lack of Circuit Capacity and Aging Assets -- 1.3.2 Operation Constraints -- 1.3.3 Self-Healing Grid -- 1.3.4 Respond to National Initiatives -- 1.4 Smart Grid Definition -- 1.5 Smart Grid Elements -- 1.5.1 Distributed Generation -- 1.5.2 Energy Storage -- 1.5.3 Demand Response -- 1.5.4 Integrated Communications -- 1.5.4.1 Communication Networks -- 1.5.4.2 Power Line Communication (PLC) -- 1.5.5 Customer Engagement -- 1.5.6 Sensors and PMU Units -- 1.5.7 Smart Meters and Advanced Metering Infrastructure -- 1.6 Smart Grid Control -- 1.7 Smart Grid Characteristics -- 1.7.1 Flexibility -- 1.7.2 Improved Efficiency -- 1.7.3 Smart Transportation -- 1.7.4 Demand Response Support -- 1.7.5 Reliability and Power Quality -- 1.7.6 Market‐Enabling -- 1.8 Transformation from Traditional Grid to Smart Grid -- 1.8.1 The Necessity for Paradigm Shift to SG -- 1.8.2 Basic Stages of the Transformation to SG -- 1.9 Smart Grid Enabling Technologies -- 1.9.1 Electrification -- 1.9.2 Decentralization -- 1.9.3 Digitalization and Technologies -- 1.10 Actions for Shifting toward Smart Grid Paradigm -- 1.10.1 Stages for Grid Modernization -- 1.10.2 When a Grid Becomes Smart Grid -- 1.11 Highlights on Smart Grid Benefits -- 1.12 Smart Grid Challenges -- 1.12.1 Accessibility and Acceptability -- 1.12.2 Accountability -- 1.12.3 Controllability -- 1.12.4 Interoperability -- 1.12.5 Interchangeability -- 1.12.6 Maintainability -- 1.12.7 Optimality -- 1.12.8 Security.
1.12.9 Upgradability -- 1.13 Smart Grid Cost -- 1.14 Organization of the Book -- References -- Chapter 2 Renewable Energy: Overview, Opportunities and Challenges -- 2.1 Introduction -- 2.2 Description of Renewable Energy Sources -- 2.2.1 Bioenergy Energy -- 2.2.2 Geothermal Energy -- 2.2.3 Hydropower Energy -- 2.2.4 Marine Energy -- 2.2.5 Solar Energy -- 2.2.5.1 Photovoltaic -- 2.2.5.2 Concentrated Solar Power -- 2.2.5.3 Solar Thermal Heating and Cooling -- 2.2.6 Wind Energy -- 2.3 Renewable Energy: Growth, Investment, Benefits and Deployment -- 2.4 Smart Grid Enable Renewables -- 2.5 Conclusion -- References -- Chapter 3 Power Electronics Converters for Distributed Generation -- 3.1 An Overview of Distributed Generation Systems with Power Electronics -- 3.1.1 Photovoltaic Technology -- 3.1.2 Wind Power Technology -- 3.1.3 Energy Storage Systems -- 3.2 Power Electronics for Grid-Connected AC Smart Grid -- 3.2.1 Voltage-Source Converters -- 3.2.1.1 Synchronous Reference Frame -- 3.2.1.2 Stationary Reference Frame -- 3.2.1.3 Grid Synchronization -- 3.2.1.4 Virtual Synchronous Generator Operation -- 3.2.2 Multilevel Power Converters -- 3.3 Power Electronics Enabled Autonomous AC Power Systems -- 3.3.1 Converter Level Controls in Microgrids -- 3.3.1.1 Master-slave Operation -- 3.3.1.2 f-P and V-Q Droops -- 3.3.1.3 V-P and f-Q Droops -- 3.3.1.4 Virtual Impedance Enabled Control -- 3.3.2 System Level Coordination Control -- 3.4 Power Electronics Enabled Autonomous DC Power Systems -- 3.4.1 Converter Level Controls -- 3.4.1.1 V-P and V-I Droop Control -- 3.4.1.2 Virtual Impedance Enabled Control -- 3.4.1.3 Extended Droop Control -- 3.4.1.4 Adaptative Droop Control in DC Microgrids -- 3.4.2 System Level Coordination Control -- 3.4.2.1 Centralized Control Scheme -- 3.4.2.2 Distributed Control Scheme -- 3.5 Conclusion -- References.
Chapter 4 Energy Storage Systems as an Enabling Technology for the Smart Grid -- 4.1 Introduction -- 4.2 Structure of Energy Storage System -- 4.3 Energy Storage Systems Classification and Description -- 4.4 Current State of Energy Storage Technologies -- 4.5 Techno-Economic Characteristics of Energy Storage Systems -- 4.6 Selection of Energy Storage Technology for Certain Application -- 4.7 Energy Storage Applications -- 4.8 Barriers to the Deployment of Energy Storage -- 4.9 Energy Storage Roadmap -- 4.10 Conclusion -- References -- Chapter 5 Microgrids: State-of-the-Art and Future Challenges -- 5.1 Introduction -- 5.2 DC Versus AC Microgrid -- 5.2.1 LVAC and LVDC Networks -- 5.2.2 AC Microgrid -- 5.2.3 DC Microgrid -- 5.3 Microgrid Design -- 5.3.1 Methodology for the Microgrid Design -- 5.3.2 Design Considerations -- 5.4 Microgrid Control -- 5.4.1 Primary Control Level -- 5.4.1.1 Droop-Based Control -- 5.4.1.2 Communication-Based Control -- 5.4.2 Secondary Control Level -- 5.4.3 Tertiary Control Level -- 5.5 Microgrid Economics -- 5.5.1 Capacity Planning -- 5.5.2 Operations Modeling -- 5.5.3 Financial Modeling -- 5.5.4 Barriers to Realizing Microgrids -- 5.6 Operation of Multi-Microgrids -- 5.7 Microgrid Benefits -- 5.7.1 Economic Benefits -- 5.7.2 Technical Benefits -- 5.7.3 Environmental Benefits -- 5.8 Challenges -- 5.9 Conclusion -- References -- Chapter 6 Smart Transportation -- 6.1 Introduction -- 6.2 Electric Vehicle Topologies -- 6.2.1 Battery EVs -- 6.2.2 Plug-in Hybrid EVs -- 6.2.3 Hybrid EVs -- 6.2.4 Fuel-Cell EVs -- 6.3 Powertrain Architectures -- 6.3.1 Series HEV Architecture -- 6.3.2 Parallel HEV Architecture -- 6.3.3 Series-Parallel HEV Architecture -- 6.4 Battery Technology -- 6.4.1 Battery Parameters -- 6.4.2 Common Battery Chemistries -- 6.5 Battery Charger Technology -- 6.5.1 Charging Rates and Options -- 6.5.2 Wireless Charging.
6.6 Vehicle to Grid (V2G) Concept -- 6.6.1 Unidirectional V2G -- 6.6.2 Bidirectional V2G -- 6.7 Barriers to EV Adoption -- 6.7.1 Technological Problems -- 6.7.2 Social Problems -- 6.7.3 Economic Problems -- 6.8 Trends and Future Developments -- 6.9 Conclusion -- References -- Chapter 7 Net Zero Energy Buildings -- 7.1 Introduction -- 7.2 Net Zero Energy Building Definition -- 7.3 Net Zero Energy Building Design -- 7.4 Net Zero Energy Building: Modeling, Controlling and Optimization -- 7.5 Net Zero Energy Community -- 7.6 Net Zero Energy Building: Trends, Benefits, Barriers and Efficiency Investments -- 7.7 Conclusion -- References -- Chapter 8 Smart Grid Communication Infrastructures -- 8.1 Introduction -- 8.2 Advanced Metering Infrastructure -- 8.3 Smart Grid Communications -- 8.3.1 Challenges of SG Communications -- 8.3.2 Requirements of SG Communications -- 8.3.3 Architecture of SG Communication -- 8.3.4 SG Communication Technologies -- 8.4 Conclusion -- References -- Chapter 9 Smart Grid Information Security -- 9.1 Introduction -- 9.2 Smart Grid Layers -- 9.2.1 The Power System Layer -- 9.2.2 The Information Layer -- 9.2.3 The Communication Layer -- 9.3 Attacking Smart Grid Network Communication -- 9.3.1 Physical Layer Attacks -- 9.3.2 Data Injection and Replay Attacks -- 9.3.3 Network-Based Attacks -- 9.4 Design of Cyber Secure and Resilient Industrial Control Systems -- 9.4.1 Resilient Industrial Control Systems -- 9.4.2 Areas of Resilience -- 9.4.2.1 Human Systems -- 9.4.2.2 Cyber Security -- 9.4.2.3 Complex Networks and Networked Control Systems -- 9.5 Cyber Security Challenges in Smart Grid -- 9.6 Adopting an Smart Grid Security Architecture Methodology -- 9.6.1 SG Security Objectives -- 9.6.2 Cyber Security Requirements -- 9.6.2.1 Attack Detection and Resilience Operations -- 9.6.2.2 Identification, and Access Control.
9.6.2.3 Secure and Efficient Communication Protocols -- 9.7 Validating Your Smart Grid -- 9.8 Threats and Impacts: Consumers and Utility Companies -- 9.9 Governmental Effort to Secure Smart Grids -- 9.10 Conclusion -- References -- Chapter 10 Data Management in Smart Grid -- 10.1 Introduction -- 10.2 Sources of Data in Smart Grid -- 10.3 Big Data Era -- 10.4 Tools to Manage Big Data -- 10.4.1 Apache Hadoop -- 10.4.2 Not Only SQL (NoSQL) -- 10.4.3 Microsoft HDInsight -- 10.4.4 Hadoop MapReduce -- 10.4.5 Cassandra -- 10.4.6 Storm -- 10.4.7 Hive -- 10.4.8 Plotly -- 10.4.9 Talend -- 10.4.10 Bokeh -- 10.4.11 Cloudera -- 10.5 Big Data Integration, Frameworks, and Data Bases -- 10.6 Building the Foundation for Big Data Processing -- 10.6.1 Big Data Management Platform -- 10.6.1.1 Acquisition and Recording -- 10.6.1.2 Extraction, Cleaning, and Prediction -- 10.6.1.3 Big Data Integration -- 10.6.2 Big Data Analytics Platform -- 10.6.2.1 Modeling and Analysis -- 10.6.2.2 Interpretation -- 10.7 Transforming Big Data for High Value Action -- 10.7.1 Decide What to Produce -- 10.7.2 Source the Raw Materials -- 10.7.3 Produce Insights with Speed -- 10.7.4 Deliver the Goods and Act -- 10.8 Privacy Information Impacts on Smart Grid -- 10.9 Meter Data Management for Smart Grid -- 10.10 Summary -- References -- Chapter 11 Demand-Management -- 11.1 Introduction -- 11.2 Demand Response -- 11.3 Demand Response Programs -- 11.3.1 Load-Response Programs -- 11.3.2 Price Response Programs -- 11.4 End-User Engagement -- 11.5 Challenges of DR within Smart Grid -- 11.6 Demand-Side Management -- 11.7 DSM Techniques -- 11.8 DSM Evaluation -- 11.9 Demand Response Applications -- 11.10 Summary -- References -- Chapter 12 Business Models for the Smart Grid -- 12.1 The Business Model Concept -- 12.2 The Electricity Value Chain -- 12.3 Electricity Markets.
12.4 Review of the Previous Proposed Smart Grid Business Models.
Record Nr. UNINA-9910830648903321
Refaat Shady S.  
Hoboken, New Jersey : , : Wiley, , [2021]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui