top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Introduction to the physics and techniques of remote sensing / / Charles Elachi and Jakob J. van Zyl
Introduction to the physics and techniques of remote sensing / / Charles Elachi and Jakob J. van Zyl
Autore Elachi Charles
Edizione [Third edition.]
Pubbl/distr/stampa Hoboken, New Jersey : , : John Wiley & Sons, Incorporated, , [2021]
Descrizione fisica 1 online resource (555 pages) : illustrations
Disciplina 621.3678
Collana Wiley Series in Remote Sensing and Image Processing Ser.
Soggetto topico Remote sensing
Soggetto genere / forma Electronic books.
ISBN 1-5231-4355-X
1-119-52304-4
1-119-52312-5
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Cover -- Title Page -- Copyright Page -- Contents -- Preface -- Chapter 1 Introduction -- 1.1 Types and Classes of Remote Sensing Data -- 1.2 Brief History of Remote Sensing -- 1.3 Remote Sensing Space Platforms -- 1.4 Transmission Through the Earth and Planetary Atmospheres -- References and Further Reading -- Chapter 2 Nature and Properties of Electromagnetic Waves -- 2.1 Fundamental Properties of Electromagnetic Waves -- 2.1.1 Electromagnetic Spectrum -- 2.1.2 Maxwell´s Equations -- 2.1.3 Wave Equation and Solution -- 2.1.4 Quantum Properties of Electromagnetic Radiation -- 2.1.5 Polarization -- 2.1.6 Coherency -- 2.1.7 Group and Phase Velocity -- 2.1.8 Doppler Effect -- 2.2 Nomenclature and Definition of Radiation Quantities -- 2.2.1 Radiation Quantities -- 2.2.2 Spectral Quantities -- 2.2.3 Luminous Quantities -- 2.3 Generation of Electromagnetic Radiation -- 2.4 Detection of Electromagnetic Radiation -- 2.5 Interaction of Electromagnetic Waves with Matter: Quick Overview -- 2.6 Interaction Mechanisms Throughout the Electromagnetic Spectrum -- Exercises -- References and Further Reading -- Chapter 3 Solid Surfaces Sensing in the Visible and Near Infrared -- 3.1 Source Spectral Characteristics -- 3.2 Wave-Surface Interaction Mechanisms -- 3.2.1 Reflection, Transmission, and Scattering -- 3.2.2 Vibrational Processes -- 3.2.3 Electronic Processes -- 3.2.4 Fluorescence -- 3.3 Signature of Solid Surface Materials -- 3.3.1 Signature of Geologic Materials -- 3.3.2 Signature of Biologic Materials -- 3.3.3 Depth of Penetration -- 3.4 Passive Imaging Sensors -- 3.4.1 Imaging Basics -- 3.4.2 Sensor Elements -- 3.4.3 Detectors -- 3.5 Types of Imaging Systems -- 3.6 Description of Some Visible/Infrared Imaging Sensors -- 3.6.1 Landsat Enhanced Thematic Mapper Plus (ETM+) -- 3.6.2 Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER).
3.6.3 Mars Orbiter Camera (MOC) -- 3.6.4 Mars Exploration Rover Panchromatic Camera (Pancam) -- 3.6.5 Cassini Imaging Instrument -- 3.6.6 Juno Imaging System -- 3.6.7 Europa Imaging System -- 3.6.8 Cassini Visual and Infrared Mapping Spectrometer (VIMS) -- 3.6.9 Chandrayaan Imaging Spectrometer M3 -- 3.6.10 Sentinel Multispectral Imager -- 3.6.11 Airborne Visible-Infrared Imaging Spectrometer (AVIRIS) -- 3.7 Active Sensors -- 3.8 Surface Sensing at Very Short Wavelengths -- 3.8.1 Radiation Sources -- 3.8.2 Detection -- 3.9 Image Data Analysis -- 3.9.1 Detection and Delineation -- 3.9.2 Classification -- 3.9.3 Identification -- Exercises -- References and Further Reading -- Chapter 4 Solid-Surface Sensing: Thermal Infrared -- 4.1 Thermal Radiation Laws -- 4.1.1 Emissivity of Natural Terrain -- 4.1.2 Emissivity from the Sun and Planetary Surfaces -- 4.2 Heat Conduction Theory -- 4.3 Effect of Periodic Heating -- 4.4 Use of Thermal Emission in Surface Remote Sensing -- 4.4.1 Surface Heating by the Sun -- 4.4.2 Effect of Surface Cover -- 4.4.3 Separation of Surface Units Based on Their Thermal Signature -- 4.4.4 Example of Application in Geology -- 4.4.5 Effects of Clouds on Thermal Infrared Sensing -- 4.5 Use of Thermal Infrared Spectral Signature in Sensing -- 4.6 Thermal Infrared Sensors -- 4.6.1 Heat Capacity Mapping Radiometer -- 4.6.2 Thermal Infrared Multispectral Scanner -- 4.6.3 ASTER Thermal Infrared Imager -- 4.6.4 Spitzer Space Telescope -- 4.6.5 2001 Mars Odyssey Thermal Emission Imaging System (THEMIS) -- 4.6.6 Advanced Very High Resolution Radiometer (AVHRR) -- Exercises -- References and Further Reading -- Chapter 5 Solid-Surface Sensing: Microwave Emission -- 5.1 Power-Temperature Correspondence -- 5.2 Simple Microwave Radiometry Models -- 5.2.1 Effects of Polarization -- 5.2.2 Effects of the Observation Angle.
5.2.3 Effects of the Atmosphere -- 5.2.4 Effects of Surface Roughness -- 5.3 Applications and Use in Surface Sensing -- 5.3.1 Application in Polar Ice Mapping -- 5.3.2 Application in Soil Moisture Mapping -- 5.3.3 Measurement Ambiguity -- 5.4 Description of Microwave Radiometers -- 5.4.1 Antenna and Scanning Configuration for Real-Aperture Radiometers -- 5.4.2 Synthetic Aperture Radiometers -- 5.4.3 Receiver Subsystems -- 5.4.4 Data Processing -- 5.5 Examples of Developed Radiometers -- 5.5.1 Scanning Multichannel Microwave Radiometer (SMMR) -- 5.5.2 Special Sensor Microwave Imager (SSM/I) -- 5.5.3 Tropical Rainfall Mapping Mission Microwave Imager (TMI) -- 5.5.4 AMSR-E -- 5.5.5 SMAP Radiometer -- Exercises -- References and Further Reading -- Chapter 6 Solid-Surface Sensing: Microwave and Radio Frequencies -- 6.1 Surface Interaction Mechanism -- 6.1.1 Surface Scattering Models -- 6.1.2 Absorption Losses and Volume Scattering -- 6.1.3 Effects of Polarization -- 6.1.4 Effects of the Frequency -- 6.1.5 Effects of the Incidence Angle -- 6.1.6 Scattering from Natural Terrain -- 6.2 Basic Principles of Radar Sensors -- 6.2.1 Antenna Beam Characteristics -- 6.2.2 Signal Properties: Spectrum -- 6.2.3 Signal Properties: Modulation -- 6.2.4 Range Measurements and Discrimination -- 6.2.5 Doppler (Velocity) Measurement and Discrimination -- 6.2.6 High-Frequency Signal Generation -- 6.3 Imaging Sensors: Real Aperture Radars -- 6.3.1 Imaging Geometry -- 6.3.2 Range Resolution -- 6.3.3 Azimuth Resolution -- 6.3.4 Radar Equation -- 6.3.5 Signal Fading -- 6.3.6 Fading Statistics -- 6.3.7 Geometric Distortion -- 6.4 Imaging Sensors: Synthetic Aperture Radars -- 6.4.1 Synthetic Array Approach -- 6.4.2 Focused vs. Unfocused SAR -- 6.4.3 Doppler Synthesis Approach -- 6.4.4 SAR Imaging Coordinate System -- 6.4.5 Ambiguities and Artifacts -- 6.4.6 Point Target Response.
6.4.7 Correlation with Point Target Response -- 6.4.8 Advanced SAR Techniques -- 6.4.9 Description of SAR Sensors and Missions -- 6.4.10 Applications of Imaging Radars -- 6.5 Nonimaging Radar Sensors: Scatterometers -- 6.5.1 Examples of Scatterometer Instruments -- 6.5.2 Examples of Scatterometer Data -- 6.6 Nonimaging Radar Sensors: Altimeters -- 6.6.1 Examples of Altimeter Instruments -- 6.6.2 Altimeter Applications -- 6.6.3 Imaging Altimetry -- 6.6.4 Wide Swath Ocean Altimeter -- 6.7 Nonconventional Radar Sensors -- 6.8 Subsurface Sounding -- Exercises -- References and Further Reading -- Chapter 7 Ocean Surface Sensing -- 7.1 Physical Properties of the Ocean Surface -- 7.1.1 Tides and Currents -- 7.1.2 Surface Waves -- 7.2 Mapping of the Ocean Topography -- 7.2.1 Geoid Measurement -- 7.2.2 Surface Wave Effects -- 7.2.3 Surface Wind Effects -- 7.2.4 Dynamic Ocean Topography -- 7.2.5 Ancillary Measurements -- 7.3 Surface Wind Mapping -- 7.3.1 Observations Required -- 7.3.2 Nadir Observations -- 7.4 Ocean Surface Imaging -- 7.4.1 Radar Imaging Mechanisms -- 7.4.2 Examples of Ocean Features on Radar Images -- 7.4.3 Imaging of Sea Ice -- 7.4.4 Ocean Color Mapping -- 7.4.5 Ocean Surface Temperature Mapping -- 7.4.6 Ocean Salinity Mapping -- Exercises -- References and Further Reading -- Chapter 8 Basic Principles of Atmospheric Sensing and Radiative Transfer -- 8.1 Physical Properties of the Atmosphere -- 8.2 Atmospheric Composition -- 8.3 Particulates and Clouds -- 8.4 Wave Interaction Mechanisms in Planetary Atmospheres -- 8.4.1 Resonant Interactions -- 8.4.2 Spectral Line Shape -- 8.4.3 Nonresonant Absorption -- 8.4.4 Nonresonant Emission -- 8.4.5 Wave Particle Interaction, Scattering -- 8.4.6 Wave Refraction -- 8.5 Optical Thickness -- 8.6 Radiative Transfer Equation -- 8.7 Case of a Nonscattering Plane Parallel Atmosphere.
8.8 Basic Concepts of Atmospheric Remote Sounding -- 8.8.1 Basic Concept of Temperature Sounding -- 8.8.2 Basic Concept for Composition Sounding -- 8.8.3 Basic Concept for Pressure Sounding -- 8.8.4 Basic Concept of Density Measurement -- 8.8.5 Basic Concept of Wind Measurement -- Exercises -- References and Further Reading -- Chapter 9 Atmospheric Remote Sensing in the Microwave Region -- 9.1 Microwave Interactions with Atmospheric Gases -- 9.2 Basic Concept of Downlooking Sensors -- 9.2.1 Temperature Sounding -- 9.2.2 Constituent Density Profile: Case of Water Vapor -- 9.3 Basic Concept for Uplooking Sensors -- 9.4 Basic Concept for Limblooking Sensors -- 9.5 Inversion Concepts -- 9.6 Basic Elements of Passive Microwave Sensors -- 9.7 Surface Pressure Sensing -- 9.8 Atmospheric Sounding by Occultation -- 9.9 Microwave Scattering by Atmospheric Particles -- 9.10 Radar Sounding of Rain -- 9.11 Radar Equation for Precipitation Measurement -- 9.12 The Tropical Rainfall Measuring Mission (TRMM) -- 9.13 Rain Cube -- 9.14 CloudSat -- 9.15 Cassini Microwave Radiometer -- 9.16 Juno Microwave Radiometer (MWR) -- Exercises -- References and Further Reading -- Chapter 10 Millimeter and Submillimeter Sensing of Atmospheres -- 10.1 Interaction with Atmospheric Constituents -- 10.2 Downlooking Sounding -- 10.3 Limb Sounding -- 10.4 Elements of a Millimeter Sounder -- 10.5 Submillimeter Atmospheric Sounder -- Exercises -- References and Further Reading -- Chapter 11 Atmospheric Remote Sensing in the Visible and Infrared -- 11.1 Interaction of Visible and Infrared Radiation with the Atmosphere -- 11.1.1 Visible and Near-Infrared Radiation -- 11.1.2 Thermal Infrared Radiation -- 11.1.3 Resonant Interactions -- 11.1.4 Effects of Scattering by Particulates -- 11.2 Downlooking Sounding -- 11.2.1 General Formulation for Emitted Radiation.
11.2.2 Temperature Profile Sounding.
Record Nr. UNINA-9910555132303321
Elachi Charles  
Hoboken, New Jersey : , : John Wiley & Sons, Incorporated, , [2021]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Introduction to the physics and techniques of remote sensing / / Charles Elachi and Jakob J. van Zyl
Introduction to the physics and techniques of remote sensing / / Charles Elachi and Jakob J. van Zyl
Autore Elachi Charles
Edizione [Third edition.]
Pubbl/distr/stampa Hoboken, New Jersey : , : John Wiley & Sons, Incorporated, , 2021
Descrizione fisica 1 online resource (xvii, 534 pages.) : illustrations
Collana Wiley Series in Remote Sensing and Image Processing
Soggetto topico Remote sensing
ISBN 1-5231-4355-X
1-119-52304-4
1-119-52312-5
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910676666403321
Elachi Charles  
Hoboken, New Jersey : , : John Wiley & Sons, Incorporated, , 2021
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Introduction to the physics and techniques of remote sensing [[electronic resource]]
Introduction to the physics and techniques of remote sensing [[electronic resource]]
Autore Elachi Charles
Edizione [2nd ed.]
Pubbl/distr/stampa Hoboken, N.J., : Wiley-Interscience, c2006
Descrizione fisica 1 online resource (572 p.)
Disciplina 621.36/78
621.3678
Altri autori (Persone) Van ZylJakob <1967->
Collana Wiley series in remote sensing
Soggetto topico Remote sensing
ISBN 1-280-45020-7
9786610450206
0-470-24261-2
0-471-78338-2
0-471-78339-0
1-60119-095-6
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Introduction to the Physics and Techniques of Remote Sensing; Contents; Preface; 1 Introduction; 1-1 Types and Classes of Remote Sensing Data; 1-2 Brief History of Remote Sensing; 1-3 Remote Sensing Space Platforms; 1-4 Transmission Through the Earth and Planetary Atmospheres; References and Further Reading; 2 Nature and Properties of Electromagnetic Waves; 2-1 Fundamental Properties of Electromagnetic Waves; 2-1-1 Electromagnetic Spectrum; 2-1-2 Maxwell's Equations; 2-1-3 Wave Equation and Solution; 2-1-4 Quantum Properties of Electromagnetic Radiation; 2-1-5 Polarization; 2-1-6 Coherency
2-1-7 Group and Phase Velocity2-1-8 Doppler Effect; 2-2 Nomenclature and Definition of Radiation Quantities; 2-2-1 Radiation Quantities; 2-2-2 Spectral Quantities; 2-2-3 Luminous Quantities; 2-3 Generation of Electromagnetic Radiation; 2-4 Detection of Electromagnetic Radiation; 2-5 Interaction of Electromagnetic Waves with Matter: Quick Overview; 2-6 Interaction Mechanisms Throughout the Electromagnetic Spectrum; Exercises; References and Further Reading; 3 Solid Surfaces Sensing in the Visible and Near Infrared; 3-1 Source Spectral Characteristics; 3-2 Wave-Surface Interaction Mechanisms
3-2-1 Reflection, Transmission, and Scattering3-2-2 Vibrational Processes; 3-2-3 Electronic Processes; 3-2-4 Fluorescence; 3-3 Signature of Solid Surface Materials; 3-3-1 Signature of Geologic Materials; 3-3-2 Signature of Biologic Materials; 3-3-3 Depth of Penetration; 3-4 Passive Imaging Sensors; 3-4-1 Imaging Basics; 3-4-2 Sensor Elements; 3-4-3 Detectors; 3-5 Types of Imaging Systems; 3-6 Description of Some Visible/Infrared Imaging Sensors; 3-6-1 Landsat-Enhanced Thematic Mapper Plus (ETM+); 3-6-2 Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER)
3-6-3 Mars Orbiter Camera (MOC)3-6-4 Mars Exploration Rover Panchromatic Camera (Pancam); 3-7 Active Sensors; 3-8 Surface Sensing at Very Short Wavelengths; 3-8-1 Radiation Sources; 3-8-2 Detection; 3-9 Image Data Analysis; 3-9-1 Detection and Delineation; 3-9-2 Classification; 3-9-3 Identification; Exercises; References and Further Reading; 4 Solid-Surface Sensing: Thermal Infrared; 4-1 Thermal Radiation Laws; 4-1-1 Emissivity of Natural Terrain; 4-1-2 Emissivity from the Sun and Planetary Surfaces; 4-2 Heat Conduction Theory; 4-3 Effect of Periodic Heating
4-4 Use of Thermal Emission in Surface Remote Sensing4-4-1 Surface Heating by the Sun; 4-4-2 Effect of Surface Cover; 4-4-3 Separation of Surface Units Based on Their Thermal Signature; 4-4-4 Example of Application in Geology; 4-4-5 Effects of Clouds on Thermal Infrared Sensing; 4-5 Use of Thermal Infrared Spectral Signatures in Sensing; 4-6 Thermal Infrared Sensors; 4-6-1 Heat Capacity Mapping Radiometer; 4-6-2 Thermal Infrared Multispectral Scanner; 4-6-3 ASTER Thermal Infrared Sensor; 4-6-4 Spitzer Space Telescope; 4-6-5 2001 Mars Odyssey Thermal Emission Imaging System (THEMIS)
4-6-6 Advanced Very High Resolution Radiometer (AVHRR)
Record Nr. UNINA-9910142433603321
Elachi Charles  
Hoboken, N.J., : Wiley-Interscience, c2006
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui