Minimum divergence methods in statistical machine learning : from an information geometric viewpoint / / Shinto Eguchi and Osamu Komori
| Minimum divergence methods in statistical machine learning : from an information geometric viewpoint / / Shinto Eguchi and Osamu Komori |
| Autore | Eguchi Shinto |
| Pubbl/distr/stampa | Tokyo, Japan : , : Springer, , [2022] |
| Descrizione fisica | 1 online resource (224 pages) |
| Disciplina | 006.31 |
| Soggetto topico |
Pattern recognition systems
Mathematics Aprenentatge automàtic Estadística matemàtica |
| Soggetto genere / forma | Llibres electrònics |
| ISBN | 4-431-56922-7 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Record Nr. | UNISA-996466419103316 |
Eguchi Shinto
|
||
| Tokyo, Japan : , : Springer, , [2022] | ||
| Lo trovi qui: Univ. di Salerno | ||
| ||
Minimum Divergence Methods in Statistical Machine Learning : From an Information Geometric Viewpoint / / by Shinto Eguchi, Osamu Komori
| Minimum Divergence Methods in Statistical Machine Learning : From an Information Geometric Viewpoint / / by Shinto Eguchi, Osamu Komori |
| Autore | Eguchi Shinto |
| Edizione | [1st ed. 2022.] |
| Pubbl/distr/stampa | Tokyo : , : Springer Japan : , : Imprint : Springer, , 2022 |
| Descrizione fisica | 1 online resource (224 pages) |
| Disciplina | 006.31 |
| Soggetto topico |
Statistics
Computer science - Mathematics Mathematical statistics Statistics in Engineering, Physics, Computer Science, Chemistry and Earth Sciences Statistical Theory and Methods Probability and Statistics in Computer Science |
| ISBN |
9784431569220
4431569227 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto | Information geometry -- Information divergence -- Maximum entropy model -- Minimum divergence method -- Unsupervised learning algorithms -- Regression model -- Classification. . |
| Record Nr. | UNINA-9910552748103321 |
Eguchi Shinto
|
||
| Tokyo : , : Springer Japan : , : Imprint : Springer, , 2022 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Minimum Gamma-Divergence for Regression and Classification Problems / / by Shinto Eguchi
| Minimum Gamma-Divergence for Regression and Classification Problems / / by Shinto Eguchi |
| Autore | Eguchi Shinto |
| Edizione | [1st ed. 2025.] |
| Pubbl/distr/stampa | Singapore : , : Springer Nature Singapore : , : Imprint : Springer, , 2025 |
| Descrizione fisica | 1 online resource (212 pages) |
| Disciplina | 519.5 |
| Collana | JSS Research Series in Statistics |
| Soggetto topico |
Statistics
Stochastic models Mathematical statistics Machine learning Regression analysis Biometry Statistical Theory and Methods Stochastic Modelling in Statistics Parametric Inference Machine Learning Linear Models and Regression Biostatistics Estadística Estadística matemàtica Aprenentatge automàtic Anàlisi de regressió Biometria Models lineals (Estadística) |
| Soggetto genere / forma | Llibres electrònics |
| ISBN | 9789819788804 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto | 1. Introduction -- 2. Framework of gamma-divergence -- 2.1. Scale invariance -- 2.2 GM divergence and HM divergence -- 3. Minimum divergence methods for generalized linear models -- 3.1. Bernoulli logistic model -- 3.2. Poisson log-linear model -- 3.3. Poisson point process model -- 4. Minimum divergence methods in machine leaning -- 4.1. Multi-class AdaBoost -- 4.2. Boltzmann machine -- 5. gamma-divergence for real valued functions -- 6. Discussion. |
| Record Nr. | UNINA-9910986137903321 |
Eguchi Shinto
|
||
| Singapore : , : Springer Nature Singapore : , : Imprint : Springer, , 2025 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||