Vai al contenuto principale della pagina

Boundary Value Problems and Hardy Spaces for Elliptic Systems with Block Structure / / by Pascal Auscher, Moritz Egert



(Visualizza in formato marc)    (Visualizza in BIBFRAME)

Autore: Auscher Pascal Visualizza persona
Titolo: Boundary Value Problems and Hardy Spaces for Elliptic Systems with Block Structure / / by Pascal Auscher, Moritz Egert Visualizza cluster
Pubblicazione: Cham : , : Springer International Publishing : , : Imprint : Birkhäuser, , 2023
Edizione: 1st ed. 2023.
Descrizione fisica: 1 online resource (310 pages)
Disciplina: 515.353
Soggetto topico: Differential equations
Harmonic analysis
Operator theory
Functional analysis
Differential Equations
Abstract Harmonic Analysis
Operator Theory
Functional Analysis
Equacions diferencials el·líptiques
Problemes de contorn
Espais de Hardy
Soggetto genere / forma: Llibres electrònics
Altri autori: EgertMoritz  
Nota di contenuto: Chapter. 1. Introduction and main results -- Chapter. 2. Preliminaries on function spaces -- Chapter. 3. Preliminaries on operator theory -- Chapter. 4. Hp - Hq bounded families -- Chapter. 5. Conservation properties -- Chapter. 6. The four critical numbers -- Chapter. 7. Riesz transform estimates: Part I -- Chapter. 8. Operator-adapted spaces -- Chapter. 9. Identification of adapted Hardy spaces -- Chapter. 10. A digression: H -calculus and analyticity -- Chapter. 11. Riesz transform estimates: Part II -- Chapter. 12. Critical numbers for Poisson and heat semigroups -- Chapter. 13. Lp boundedness of the Hodge projector -- Chapter. 14. Critical numbers and kernel bounds -- Chapter. 15. Comparison with the Auscher–Stahlhut interval -- Chapter. 16. Basic properties of weak solutions -- Chapter. 17. Existence in Hp Dirichlet and Regularity problems -- Chapter. 18. Existence in the Dirichlet problems with data -- Chapter. 19. Existence in Dirichlet problems with fractional regularity data -- Chapter. 20. Single layer operators for L and estimates for L-1 -- Chapter. 21. Uniqueness in regularity and Dirichlet problems -- Chapter. 22. The Neumann problem -- Appendix A. Non-tangential maximal functions and traces -- Appendix B. The Lp-realization of a sectorial operator in L2 -- References -- Index.
Sommario/riassunto: In this monograph, for elliptic systems with block structure in the upper half-space and t-independent coefficients, the authors settle the study of boundary value problems by proving compatible well-posedness of Dirichlet, regularity and Neumann problems in optimal ranges of exponents. Prior to this work, only the two-dimensional situation was fully understood. In higher dimensions, partial results for existence in smaller ranges of exponents and for a subclass of such systems had been established. The presented uniqueness results are completely new, and the authors also elucidate optimal ranges for problems with fractional regularity data. The first part of the monograph, which can be read independently, provides optimal ranges of exponents for functional calculus and adapted Hardy spaces for the associated boundary operator. Methods use and improve, with new results, all the machinery developed over the last two decades to study such problems: the Kato square root estimates and Riesz transforms, Hardy spaces associated to operators, off-diagonal estimates, non-tangential estimates and square functions, and abstract layer potentials to replace fundamental solutions in the absence of local regularity of solutions.
Titolo autorizzato: Boundary Value Problems and Hardy Spaces for Elliptic Systems with Block Structure  Visualizza cluster
ISBN: 3-031-29973-6
Formato: Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione: Inglese
Record Nr.: 9910736007303321
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Serie: Progress in Mathematics, . 2296-505X ; ; 346