top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Fluid mechanics : an introduction to the theory of fluid flows / / Franz Durst
Fluid mechanics : an introduction to the theory of fluid flows / / Franz Durst
Autore Durst F.
Edizione [Second and extended edition.]
Pubbl/distr/stampa Berlin, Germany : , : Springer, , [2022]
Descrizione fisica 1 online resource (828 pages) : illustrations (black and white, and color)
Disciplina 620.106
Collana Graduate texts in physics
Soggetto topico Fluid mechanics
Hydraulic engineering
Physics
ISBN 9783662639153
9783662639139
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Intro -- Preface to the German Edition -- Preface to the English Edition -- Preface to the Second Edition -- Contents -- 1 Introduction, Importance and Development of Fluid Mechanics -- Abstract -- 1.1 Fluid Flows and Their Significance -- 1.2 Sub-Domains of Fluid Mechanics -- 1.3 Historical Developments -- Further Readings -- 2 Mathematical Basics -- Abstract -- 2.1 Introduction and Definitions -- 2.2 Tensors of Zero Order (Scalars) -- 2.3 Tensors of First Order (Vectors) -- 2.4 Tensors of Second Order -- 2.5 Field Variables and Mathematical Operations -- 2.6 Substantial Quantities and Substantial Derivative -- 2.7 Gradient, Divergence, Rotation and Laplace Operators -- 2.8 Complex Numbers -- 2.8.1 Axiomatic Introduction to Complex Numbers -- 2.8.2 Graphical Representation of Complex Numbers -- 2.8.3 The Gauss Complex Number Plane -- 2.8.4 Trigonometric Representation -- 2.8.5 Stereographic Projection -- 2.8.6 Elementary Function -- Further Readings -- 3 Physical Basics -- Abstract -- 3.1 Solids and Fluids -- 3.2 Molecular Properties and Quantities of Continuum Mechanics -- 3.3 Transport Processes in Newtonian Fluids -- 3.3.1 General Considerations -- 3.3.2 Pressure in Gases -- 3.3.3 Molecular-Dependent Momentum Transport -- 3.3.4 Molecular Transport of Heat and Mass in Gases -- 3.4 Viscosity of Fluids -- 3.5 Balance Considerations and Conservation Laws -- 3.6 Thermodynamic Considerations -- Further Readings -- 4 Basics of Fluid Kinematics -- Abstract -- 4.1 General Considerations -- 4.2 Substantial Derivatives -- 4.3 Motion of Fluid Elements -- 4.3.1 Path Lines of Fluid Elements -- 4.3.2 Streak Lines of Locally Injected Tracers -- 4.4 Kinematic Quantities of Flow Fields -- 4.4.1 Stream Lines of a Velocity Field -- 4.4.2 Stream Function and Stream Lines of Two-Dimensional Flow Fields -- 4.4.3 Divergence of a Flow Field.
4.5 Translation, Deformation and Rotation of Fluid Elements -- 4.6 Relative Motions -- Further Readings -- 5 Basic Equations of Fluid Mechanics -- Abstract -- 5.1 General Considerations -- 5.2 Mass Conservation (Continuity Equation) -- 5.3 Newton's Second Law (Momentum Equation) -- 5.4 The Navier-Stokes Equations -- 5.5 Mechanical Energy Equation -- 5.6 Thermal Energy Equation -- 5.7 Basic Equations in Different Coordinate Systems -- 5.7.1 Continuity Equation -- 5.7.2 Navier-Stokes Equations -- 5.8 Special Forms of the Basic Equations -- 5.8.1 Transport Equation for Vorticity -- 5.8.2 The Bernoulli Equation -- 5.8.3 Crocco Equation -- 5.8.4 Further Forms of the Energy Equation -- 5.9 Transport Equation for Chemical Species -- Further Readings -- 6 Extended Basic Equations of Fluid Mechanics -- Abstract -- 6.1 General Introduction -- 6.2 Extended Diffusive Transport Equations -- 6.2.1 Mass Transport Equations -- 6.2.2 Heat Transport Equations -- 6.2.3 Momentum Transport Equations -- 6.3 Analytical and Numerical Treatments of Micro-Channel and Micro-Capillary Flows -- 6.3.1 Summary of Numerical Investigations -- 6.3.1.1 Self-Diffusion in Ideal Gas Flows -- 6.3.1.2 Numerical Predictions and Results -- 6.3.2 Analytical Treatments -- 6.3.2.1 Micro-Channel Flows -- 6.3.2.2 Micro-Capillary Flows -- 6.4 Pressure Gradient Versus Wall Reflection Effects -- Further Readings -- 7 Hydrostatics and Aerostatics -- Abstract -- 7.1 Hydrostatics -- 7.2 Connected Containers and Pressure-Measuring Instruments -- 7.2.1 Interconnected Containers -- 7.2.2 Pressure-Measuring Instruments -- 7.3 Free Fluid Surfaces -- 7.3.1 Surface Tension -- 7.3.2 Water Columns in Tubes and Between Plates -- 7.3.3 Bubble Formation on Nozzles -- 7.4 Aerostatics -- 7.4.1 Pressure in the Atmosphere -- 7.4.2 Rotating Containers -- 7.4.3 Aerostatic Buoyancy.
7.4.4 Conditions for Aerostatics: Stability of Layers -- Further Readings -- 8 Similarity Theory -- Abstract -- 8.1 Introduction -- 8.2 Dimensionless Form of the Differential Equations -- 8.2.1 General Remarks -- 8.3 Dimensionless Form of the Differential Equations -- 8.3.1 Considerations in the Presence of Geometric and Kinematic Similarities -- 8.3.2 Importance of Viscous Velocity, Time and Length Scales -- 8.4 Dimensional Analysis and π-Theorem -- Further Readings -- 9 Integral Forms of the Basic Equations -- Abstract -- 9.1 Integral Form of the Continuity Equation -- 9.2 Integral Form of the Momentum Equation -- 9.3 Integral Form of the Mechanical Energy Equation -- 9.4 Integral Form of the Thermal Energy Equation -- 9.5 Applications of the Integral Form of the Basic Equations -- 9.5.1 Outflow from Containers -- 9.5.2 Exit Velocity of a Nozzle -- 9.5.3 Momentum on a Plane Vertical Plate -- 9.5.4 Momentum on an Inclined Plane Plate -- 9.5.5 Jet Deflection by an Edge -- 9.5.6 Mixing Process in a Channel of Constant Cross-Section in the Flow Direction -- 9.5.7 Force on a Turbine Blade in a Viscosity-Free Fluid -- 9.5.8 Force on a Grid with Periodical Blades -- 9.5.9 Euler's Turbine Equation -- 9.5.10 Power of Flow Machines -- Further Readings -- 10 Stream Tube Theory -- Abstract -- 10.1 General Considerations -- 10.2 Derivations of the Basic Equations -- 10.2.1 Continuity Equation -- 10.2.2 Momentum Equation -- 10.2.3 Bernoulli Equation -- 10.2.4 Total Energy Equation -- 10.3 Incompressible Flows -- 10.3.1 Hydromechanical Nozzle Flows -- 10.3.2 Sudden Cross-Sectional Area Extension -- 10.4 Compressible Flows -- 10.4.1 Influences of Area Changes on Flows -- 10.4.2 Pressure-Driven Flows Through Converging Nozzles -- Further Readings -- 11 Potential Flows -- Abstract -- 11.1 Potential and Stream Functions -- 11.2 Potential and Complex Functions.
11.3 Uniform Flow -- 11.4 Corner and Sector Flows -- 11.5 Source or Sink Flows and Potential Vortex Flow -- 11.6 Dipole-Generated Flow -- 11.7 Potential Flow Around a Cylinder -- 11.8 Flow Around a Cylinder With Circulation -- 11.9 Summary of Important Potential Flows -- 11.10 Flow Forces on Bodies -- Further Readings -- 12 Wave Motions in Non-Viscous Fluids -- Abstract -- 12.1 General Considerations -- 12.2 Longitudinal Waves: Sound Waves in Gases -- 12.3 Transverse Waves: Surface Waves -- 12.3.1 General Solution Approach -- 12.4 Plane Standing Waves -- 12.5 Plane Progressing Waves -- 12.6 References to Further Wave Motions -- Further Readings -- 13 Introduction to Gas Dynamics -- Abstract -- 13.1 Introductory Considerations -- 13.2 Mach Lines and Mach Cone -- 13.3 Non-Linear Wave Propagation, Formation of Shock Waves -- 13.4 Alternative Forms of the Bernoulli Equation -- 13.5 Flow with Heat Transfer (Pipe Flow) -- 13.5.1 Subsonic Flow -- 13.5.2 Supersonic Flow -- 13.6 Rayleigh and Fanno Relations -- Further Readings -- 14 Stationary One-Dimensional Fluid Flows of Incompressible Viscous Fluids -- Abstract -- 14.1 General Considerations -- 14.1.1 Equations for Plane Fluid Flows -- 14.1.2 Cylindrical Fluid Flows -- 14.2 Derivations of the Basic Equations for Fully Developed Fluid Flows -- 14.2.1 Equations for Plane Fluid Flows -- 14.2.2 Equations for Cylindrical Fluid Flows -- 14.3 Plane Couette Flow -- 14.4 Plane Fluid Flow Between Plates -- 14.5 Plane Film Flow on an Inclined Plate -- 14.6 Axisymmetric Film Flow -- 14.7 Pipe Flow (Hagen-Poiseuille Flow) -- 14.8 Axial Flow Between Two Cylinders -- 14.9 Film Flows with Two Layers -- 14.10 Two-Phase Plane Channel Flow -- Further Readings -- 15 Time-Dependent, One-Dimensional Flows of Viscous Fluids -- Abstract -- 15.1 General Considerations -- 15.2 Accelerated and Decelerated Fluid Flows.
15.2.1 Stokes First Problem -- 15.2.2 Diffusion of a Vortex Layer -- 15.2.3 Channel Flow Induced by Movements of Plates -- 15.2.4 Pipe Flow Induced by the Pipe Wall Motion -- 15.3 Oscillating Fluid Flows -- 15.3.1 Stokes Second Problem -- 15.4 Pressure Gradient-Driven Fluid Flows -- 15.4.1 Starting Flow in a Channel -- 15.4.2 Starting Pipe Flow -- Further Readings -- 16 Fluid Flows of Small Reynolds Numbers -- Abstract -- 16.1 General Considerations -- 16.2 Creeping Fluid Flows Between Two Plates -- 16.3 Plane Lubrication Films -- 16.4 Theory of Lubrication in Roller Bearings -- 16.5 The Slow Rotation of a Sphere -- 16.6 The Slow Translatory Motion of a Sphere -- 16.7 The Slow Rotational Motion of a Cylinder -- 16.8 The Slow Translatory Motion of a Cylinder -- 16.9 Diffusion and Convection Influences on Flow Fields -- Further Readings -- 17 Flows of Large Reynolds Number Boundary-Layer Flows -- Abstract -- 17.1 General Considerations and Derivations -- 17.2 Solutions of the Boundary-Layer Equations -- 17.3 Flat Plate Boundary Layer (Blasius Solution) -- 17.4 Integral Properties of Wall Boundary Layers -- 17.5 The Laminar, Plane, Two-Dimensional Free Shear Layer -- 17.6 The Plane, Two-Dimensional, Laminar Free Jet -- 17.7 Plane, Two-Dimensional Wake Flow -- 17.8 Converging Channel Flow -- Further Readings -- 18 Unstable Flows and Laminar-Turbulent Transition -- Abstract -- 18.1 General Considerations -- 18.2 Causes of Flow Instabilities -- 18.2.1 Stability of Atmospheric Temperature Distributions -- 18.2.2 Gravitationally Caused Instabilities -- 18.2.3 Instabilities in Annular Clearances Caused by Rotation -- 18.3 Generalized Instability Considerations (Orr-Sommerfeld Equation) -- 18.4 Classifications of Instabilities -- 18.5 Transitional Boundary-Layer Flows -- Further Readings -- 19 Turbulent Flows -- Abstract -- 19.1 General Considerations.
19.2 Statistical Description of Turbulent Flows.
Record Nr. UNINA-9910584482803321
Durst F.  
Berlin, Germany : , : Springer, , [2022]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Fluid mechanics : an introduction to the theory of fluid flows / / Franz Durst
Fluid mechanics : an introduction to the theory of fluid flows / / Franz Durst
Autore Durst F.
Edizione [Second and extended edition.]
Pubbl/distr/stampa Berlin, Germany : , : Springer, , [2022]
Descrizione fisica 1 online resource (828 pages) : illustrations (black and white, and color)
Disciplina 620.106
Collana Graduate texts in physics
Soggetto topico Fluid mechanics
Hydraulic engineering
Physics
ISBN 9783662639153
9783662639139
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Intro -- Preface to the German Edition -- Preface to the English Edition -- Preface to the Second Edition -- Contents -- 1 Introduction, Importance and Development of Fluid Mechanics -- Abstract -- 1.1 Fluid Flows and Their Significance -- 1.2 Sub-Domains of Fluid Mechanics -- 1.3 Historical Developments -- Further Readings -- 2 Mathematical Basics -- Abstract -- 2.1 Introduction and Definitions -- 2.2 Tensors of Zero Order (Scalars) -- 2.3 Tensors of First Order (Vectors) -- 2.4 Tensors of Second Order -- 2.5 Field Variables and Mathematical Operations -- 2.6 Substantial Quantities and Substantial Derivative -- 2.7 Gradient, Divergence, Rotation and Laplace Operators -- 2.8 Complex Numbers -- 2.8.1 Axiomatic Introduction to Complex Numbers -- 2.8.2 Graphical Representation of Complex Numbers -- 2.8.3 The Gauss Complex Number Plane -- 2.8.4 Trigonometric Representation -- 2.8.5 Stereographic Projection -- 2.8.6 Elementary Function -- Further Readings -- 3 Physical Basics -- Abstract -- 3.1 Solids and Fluids -- 3.2 Molecular Properties and Quantities of Continuum Mechanics -- 3.3 Transport Processes in Newtonian Fluids -- 3.3.1 General Considerations -- 3.3.2 Pressure in Gases -- 3.3.3 Molecular-Dependent Momentum Transport -- 3.3.4 Molecular Transport of Heat and Mass in Gases -- 3.4 Viscosity of Fluids -- 3.5 Balance Considerations and Conservation Laws -- 3.6 Thermodynamic Considerations -- Further Readings -- 4 Basics of Fluid Kinematics -- Abstract -- 4.1 General Considerations -- 4.2 Substantial Derivatives -- 4.3 Motion of Fluid Elements -- 4.3.1 Path Lines of Fluid Elements -- 4.3.2 Streak Lines of Locally Injected Tracers -- 4.4 Kinematic Quantities of Flow Fields -- 4.4.1 Stream Lines of a Velocity Field -- 4.4.2 Stream Function and Stream Lines of Two-Dimensional Flow Fields -- 4.4.3 Divergence of a Flow Field.
4.5 Translation, Deformation and Rotation of Fluid Elements -- 4.6 Relative Motions -- Further Readings -- 5 Basic Equations of Fluid Mechanics -- Abstract -- 5.1 General Considerations -- 5.2 Mass Conservation (Continuity Equation) -- 5.3 Newton's Second Law (Momentum Equation) -- 5.4 The Navier-Stokes Equations -- 5.5 Mechanical Energy Equation -- 5.6 Thermal Energy Equation -- 5.7 Basic Equations in Different Coordinate Systems -- 5.7.1 Continuity Equation -- 5.7.2 Navier-Stokes Equations -- 5.8 Special Forms of the Basic Equations -- 5.8.1 Transport Equation for Vorticity -- 5.8.2 The Bernoulli Equation -- 5.8.3 Crocco Equation -- 5.8.4 Further Forms of the Energy Equation -- 5.9 Transport Equation for Chemical Species -- Further Readings -- 6 Extended Basic Equations of Fluid Mechanics -- Abstract -- 6.1 General Introduction -- 6.2 Extended Diffusive Transport Equations -- 6.2.1 Mass Transport Equations -- 6.2.2 Heat Transport Equations -- 6.2.3 Momentum Transport Equations -- 6.3 Analytical and Numerical Treatments of Micro-Channel and Micro-Capillary Flows -- 6.3.1 Summary of Numerical Investigations -- 6.3.1.1 Self-Diffusion in Ideal Gas Flows -- 6.3.1.2 Numerical Predictions and Results -- 6.3.2 Analytical Treatments -- 6.3.2.1 Micro-Channel Flows -- 6.3.2.2 Micro-Capillary Flows -- 6.4 Pressure Gradient Versus Wall Reflection Effects -- Further Readings -- 7 Hydrostatics and Aerostatics -- Abstract -- 7.1 Hydrostatics -- 7.2 Connected Containers and Pressure-Measuring Instruments -- 7.2.1 Interconnected Containers -- 7.2.2 Pressure-Measuring Instruments -- 7.3 Free Fluid Surfaces -- 7.3.1 Surface Tension -- 7.3.2 Water Columns in Tubes and Between Plates -- 7.3.3 Bubble Formation on Nozzles -- 7.4 Aerostatics -- 7.4.1 Pressure in the Atmosphere -- 7.4.2 Rotating Containers -- 7.4.3 Aerostatic Buoyancy.
7.4.4 Conditions for Aerostatics: Stability of Layers -- Further Readings -- 8 Similarity Theory -- Abstract -- 8.1 Introduction -- 8.2 Dimensionless Form of the Differential Equations -- 8.2.1 General Remarks -- 8.3 Dimensionless Form of the Differential Equations -- 8.3.1 Considerations in the Presence of Geometric and Kinematic Similarities -- 8.3.2 Importance of Viscous Velocity, Time and Length Scales -- 8.4 Dimensional Analysis and π-Theorem -- Further Readings -- 9 Integral Forms of the Basic Equations -- Abstract -- 9.1 Integral Form of the Continuity Equation -- 9.2 Integral Form of the Momentum Equation -- 9.3 Integral Form of the Mechanical Energy Equation -- 9.4 Integral Form of the Thermal Energy Equation -- 9.5 Applications of the Integral Form of the Basic Equations -- 9.5.1 Outflow from Containers -- 9.5.2 Exit Velocity of a Nozzle -- 9.5.3 Momentum on a Plane Vertical Plate -- 9.5.4 Momentum on an Inclined Plane Plate -- 9.5.5 Jet Deflection by an Edge -- 9.5.6 Mixing Process in a Channel of Constant Cross-Section in the Flow Direction -- 9.5.7 Force on a Turbine Blade in a Viscosity-Free Fluid -- 9.5.8 Force on a Grid with Periodical Blades -- 9.5.9 Euler's Turbine Equation -- 9.5.10 Power of Flow Machines -- Further Readings -- 10 Stream Tube Theory -- Abstract -- 10.1 General Considerations -- 10.2 Derivations of the Basic Equations -- 10.2.1 Continuity Equation -- 10.2.2 Momentum Equation -- 10.2.3 Bernoulli Equation -- 10.2.4 Total Energy Equation -- 10.3 Incompressible Flows -- 10.3.1 Hydromechanical Nozzle Flows -- 10.3.2 Sudden Cross-Sectional Area Extension -- 10.4 Compressible Flows -- 10.4.1 Influences of Area Changes on Flows -- 10.4.2 Pressure-Driven Flows Through Converging Nozzles -- Further Readings -- 11 Potential Flows -- Abstract -- 11.1 Potential and Stream Functions -- 11.2 Potential and Complex Functions.
11.3 Uniform Flow -- 11.4 Corner and Sector Flows -- 11.5 Source or Sink Flows and Potential Vortex Flow -- 11.6 Dipole-Generated Flow -- 11.7 Potential Flow Around a Cylinder -- 11.8 Flow Around a Cylinder With Circulation -- 11.9 Summary of Important Potential Flows -- 11.10 Flow Forces on Bodies -- Further Readings -- 12 Wave Motions in Non-Viscous Fluids -- Abstract -- 12.1 General Considerations -- 12.2 Longitudinal Waves: Sound Waves in Gases -- 12.3 Transverse Waves: Surface Waves -- 12.3.1 General Solution Approach -- 12.4 Plane Standing Waves -- 12.5 Plane Progressing Waves -- 12.6 References to Further Wave Motions -- Further Readings -- 13 Introduction to Gas Dynamics -- Abstract -- 13.1 Introductory Considerations -- 13.2 Mach Lines and Mach Cone -- 13.3 Non-Linear Wave Propagation, Formation of Shock Waves -- 13.4 Alternative Forms of the Bernoulli Equation -- 13.5 Flow with Heat Transfer (Pipe Flow) -- 13.5.1 Subsonic Flow -- 13.5.2 Supersonic Flow -- 13.6 Rayleigh and Fanno Relations -- Further Readings -- 14 Stationary One-Dimensional Fluid Flows of Incompressible Viscous Fluids -- Abstract -- 14.1 General Considerations -- 14.1.1 Equations for Plane Fluid Flows -- 14.1.2 Cylindrical Fluid Flows -- 14.2 Derivations of the Basic Equations for Fully Developed Fluid Flows -- 14.2.1 Equations for Plane Fluid Flows -- 14.2.2 Equations for Cylindrical Fluid Flows -- 14.3 Plane Couette Flow -- 14.4 Plane Fluid Flow Between Plates -- 14.5 Plane Film Flow on an Inclined Plate -- 14.6 Axisymmetric Film Flow -- 14.7 Pipe Flow (Hagen-Poiseuille Flow) -- 14.8 Axial Flow Between Two Cylinders -- 14.9 Film Flows with Two Layers -- 14.10 Two-Phase Plane Channel Flow -- Further Readings -- 15 Time-Dependent, One-Dimensional Flows of Viscous Fluids -- Abstract -- 15.1 General Considerations -- 15.2 Accelerated and Decelerated Fluid Flows.
15.2.1 Stokes First Problem -- 15.2.2 Diffusion of a Vortex Layer -- 15.2.3 Channel Flow Induced by Movements of Plates -- 15.2.4 Pipe Flow Induced by the Pipe Wall Motion -- 15.3 Oscillating Fluid Flows -- 15.3.1 Stokes Second Problem -- 15.4 Pressure Gradient-Driven Fluid Flows -- 15.4.1 Starting Flow in a Channel -- 15.4.2 Starting Pipe Flow -- Further Readings -- 16 Fluid Flows of Small Reynolds Numbers -- Abstract -- 16.1 General Considerations -- 16.2 Creeping Fluid Flows Between Two Plates -- 16.3 Plane Lubrication Films -- 16.4 Theory of Lubrication in Roller Bearings -- 16.5 The Slow Rotation of a Sphere -- 16.6 The Slow Translatory Motion of a Sphere -- 16.7 The Slow Rotational Motion of a Cylinder -- 16.8 The Slow Translatory Motion of a Cylinder -- 16.9 Diffusion and Convection Influences on Flow Fields -- Further Readings -- 17 Flows of Large Reynolds Number Boundary-Layer Flows -- Abstract -- 17.1 General Considerations and Derivations -- 17.2 Solutions of the Boundary-Layer Equations -- 17.3 Flat Plate Boundary Layer (Blasius Solution) -- 17.4 Integral Properties of Wall Boundary Layers -- 17.5 The Laminar, Plane, Two-Dimensional Free Shear Layer -- 17.6 The Plane, Two-Dimensional, Laminar Free Jet -- 17.7 Plane, Two-Dimensional Wake Flow -- 17.8 Converging Channel Flow -- Further Readings -- 18 Unstable Flows and Laminar-Turbulent Transition -- Abstract -- 18.1 General Considerations -- 18.2 Causes of Flow Instabilities -- 18.2.1 Stability of Atmospheric Temperature Distributions -- 18.2.2 Gravitationally Caused Instabilities -- 18.2.3 Instabilities in Annular Clearances Caused by Rotation -- 18.3 Generalized Instability Considerations (Orr-Sommerfeld Equation) -- 18.4 Classifications of Instabilities -- 18.5 Transitional Boundary-Layer Flows -- Further Readings -- 19 Turbulent Flows -- Abstract -- 19.1 General Considerations.
19.2 Statistical Description of Turbulent Flows.
Record Nr. UNISA-996483071903316
Durst F.  
Berlin, Germany : , : Springer, , [2022]
Materiale a stampa
Lo trovi qui: Univ. di Salerno
Opac: Controlla la disponibilità qui