Differential Equations and Population Dynamics I [[electronic resource] ] : Introductory Approaches / / by Arnaud Ducrot, Quentin Griette, Zhihua Liu, Pierre Magal
| Differential Equations and Population Dynamics I [[electronic resource] ] : Introductory Approaches / / by Arnaud Ducrot, Quentin Griette, Zhihua Liu, Pierre Magal |
| Autore | Ducrot Arnaud |
| Edizione | [1st ed. 2022.] |
| Pubbl/distr/stampa | Cham : , : Springer International Publishing : , : Imprint : Springer, , 2022 |
| Descrizione fisica | 1 online resource (466 pages) |
| Disciplina | 304.60151 |
| Collana | Lecture Notes on Mathematical Modelling in the Life Sciences |
| Soggetto topico |
Mathematics
Differential equations Epidemiology Mathematical models Applications of Mathematics Differential Equations Mathematical Modeling and Industrial Mathematics Models matemàtics Població Malalties infeccioses Equacions diferencials |
| Soggetto genere / forma | Llibres electrònics |
| ISBN | 3-030-98136-3 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto | Part I Linear Differential and Difference Equations: 1 Introduction to Linear Population Dynamics -- 2 Existence and Uniqueness of Solutions -- 3 Stability and Instability of Linear -- 4 Positivity and Perron-Frobenius's Theorem -- Part II Non-Linear Differential and Difference Equations: 5 Nonlinear Differential Equation -- 6 Omega and Alpha Limit -- 7 Global Attractors and Uniformly -- 8 Linearized Stability Principle and Hartman-Grobman's Theorem -- 9 Positivity and Invariant Sub-region -- 10 Monotone semiflows -- 11 Logistic Equations with Diffusion -- 12 The Poincare-Bendixson and Monotone Cyclic Feedback Systems -- 13 Bifurcations -- 14 Center Manifold Theory and Center Unstable Manifold Theory -- 15 Normal Form Theory -- Part III Applications in Population Dynamics: 16 A Holling's Predator-prey Model with Handling and Searching Predators -- 17 Hopf Bifurcation for a Holling's Predator-prey Model with Handling and Searching Predators -- 18 Epidemic Models with COVID-19. |
| Record Nr. | UNISA-996479366903316 |
Ducrot Arnaud
|
||
| Cham : , : Springer International Publishing : , : Imprint : Springer, , 2022 | ||
| Lo trovi qui: Univ. di Salerno | ||
| ||
Differential Equations and Population Dynamics I : Introductory Approaches / / by Arnaud Ducrot, Quentin Griette, Zhihua Liu, Pierre Magal
| Differential Equations and Population Dynamics I : Introductory Approaches / / by Arnaud Ducrot, Quentin Griette, Zhihua Liu, Pierre Magal |
| Autore | Ducrot Arnaud |
| Edizione | [1st ed. 2022.] |
| Pubbl/distr/stampa | Cham : , : Springer International Publishing : , : Imprint : Springer, , 2022 |
| Descrizione fisica | 1 online resource (466 pages) |
| Disciplina | 304.60151 |
| Collana | Lecture Notes on Mathematical Modelling in the Life Sciences |
| Soggetto topico |
Mathematics
Differential equations Epidemiology Mathematical models Applications of Mathematics Differential Equations Mathematical Modeling and Industrial Mathematics Models matemàtics Població Malalties infeccioses Equacions diferencials |
| Soggetto genere / forma | Llibres electrònics |
| ISBN | 3-030-98136-3 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto | Part I Linear Differential and Difference Equations: 1 Introduction to Linear Population Dynamics -- 2 Existence and Uniqueness of Solutions -- 3 Stability and Instability of Linear -- 4 Positivity and Perron-Frobenius's Theorem -- Part II Non-Linear Differential and Difference Equations: 5 Nonlinear Differential Equation -- 6 Omega and Alpha Limit -- 7 Global Attractors and Uniformly -- 8 Linearized Stability Principle and Hartman-Grobman's Theorem -- 9 Positivity and Invariant Sub-region -- 10 Monotone semiflows -- 11 Logistic Equations with Diffusion -- 12 The Poincare-Bendixson and Monotone Cyclic Feedback Systems -- 13 Bifurcations -- 14 Center Manifold Theory and Center Unstable Manifold Theory -- 15 Normal Form Theory -- Part III Applications in Population Dynamics: 16 A Holling's Predator-prey Model with Handling and Searching Predators -- 17 Hopf Bifurcation for a Holling's Predator-prey Model with Handling and Searching Predators -- 18 Epidemic Models with COVID-19. |
| Record Nr. | UNINA-9910578697803321 |
Ducrot Arnaud
|
||
| Cham : , : Springer International Publishing : , : Imprint : Springer, , 2022 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||