top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Electromechanical coupling theory, methodology and applications for high-performance microwave equipment / / Baoyan Duan and Shuxin Zhang
Electromechanical coupling theory, methodology and applications for high-performance microwave equipment / / Baoyan Duan and Shuxin Zhang
Autore Duan Baoyan
Pubbl/distr/stampa Hoboken, New Jersey : , : John Wiley & Sons, , [2023]
Descrizione fisica 1 online resource (339 pages)
Disciplina 621.381/32
Soggetto topico Microwave circuits
Microwave devices
Couplings
ISBN 1-119-90442-0
1-119-90440-4
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Cover -- Title Page -- Copyright -- Contents -- About the Authors -- Preface -- Chapter 1 Background of Electromechanical Coupling of Electronic Equipment -- 1.1 Introduction -- 1.2 Characteristics of Electronic Equipment -- 1.3 Components of Electronic Equipment -- 1.3.1 Mechanical and Structural Part of Electronic Equipment -- 1.3.2 Electrical Part of Electronic Equipment -- 1.4 On research of Electromechanical Coupling (EMC) of Electronic Equipment -- 1.4.1 Current Status of Research on Electromechanical Coupling of Electronic Equipment -- 1.4.2 The Development Trends of Electronic Equipment -- 1.4.2.1 High Frequency and High Gain -- 1.4.2.2 Broad Bandwidth, Multiband, and High Power -- 1.4.2.3 High Density and Miniaturization -- 1.4.2.4 Fast Response and High Pointing Accuracy -- 1.4.2.5 Good Environmental Adaptability -- 1.4.2.6 Integration -- 1.4.2.7 Intelligence -- 1.5 Problem of the Traditional Design Method of Electronic Equipment -- 1.5.1 Traditional Design Method and Problems with Electronic Equipment -- 1.5.2 The Electromechanical Coupling Problem of Electronic Equipment and Its Solution -- 1.6 Main Science and Technology Respects of Design for Electronic Equipment -- 1.6.1 Holism of Electronic Equipment System Design -- 1.6.2 Electromechanical Coupling Theory of Electronic Equipment -- 1.6.3 Test and Evaluation Methods of Electronic Equipment -- 1.6.4 Environmental Adaptability (Thermal, Vibration, and EMC) and Reliability of Electronic Equipment -- 1.6.5 Special Electronic Equipment -- 1.6.6 Electromechanical Coupling Design of Electronic Equipment -- 1.6.6.1 Electromechanical Coupling Design of Antennas -- 1.6.6.2 Integrated Design of Radar Antenna Servo System -- 1.6.6.3 Coupling Design of High‐Density Chassis -- 1.7 Mechatronics Marching Toward Coupling Between Mechanical and Electronic Technologies -- References.
Chapter 2 Fundamental of Establishing Multifield Coupling Theoretical Model of Electronic Equipment -- 2.1 Introduction -- 2.2 Mathematical Description of Electromagnetic (EM), Structural Deformation (S), and Temperature (T) Fields -- 2.2.1 Electromagnetic Field -- 2.2.2 Structural Displacement Field -- 2.2.3 Temperature Field -- 2.3 Consideration of Establishing Multifield Coupling Model -- References -- Chapter 3 Multifield Coupling Models of Four Kinds of Typical Electronic Equipment -- 3.1 Introduction -- 3.2 Reflector Antennas -- 3.2.1 Influence of Main Reflector Deformation -- 3.2.2 Influence of the Feed Position Error -- 3.2.3 Effect of Feed Pointing Error -- 3.2.4 Electromechanical Two‐field Coupling Model -- 3.2.5 Dual Reflector Antenna -- 3.2.6 Experiment -- 3.2.6.1 Basic Parameters -- 3.2.6.2 The Basic Idea of the Experiment -- 3.2.6.3 Working Conditions and Deformation -- 3.2.6.4 Measurement and Environment -- 3.2.6.5 Calculated and Measured Results -- 3.3 Planar Slotted Waveguide Array Antennas -- 3.3.1 Effect of Position Error of the Radiation Slot -- 3.3.2 Effect of Radiation Slot Pointing Deflection -- 3.3.3 Effect of Seam Cavity Deformation on Radiation Seam Voltage -- 3.3.4 Two‐field Electromechanical Coupling Model -- 3.3.5 Experiment -- 3.3.5.1 Basic Parameters -- 3.3.5.2 Basic Idea -- 3.3.5.3 Working Condition and Deformation -- 3.3.5.4 Testing and Environment -- 3.3.5.5 Calculated and Measured Results -- 3.4 Active Phased Array Antennas -- 3.4.1 Effect of Change of Position and Attitude of the Radiation Unit -- 3.4.2 Effect of Array Surface Manufacturing and Assembly Errors -- 3.4.3 Effect of Radiation Array Element Manufacturing and Assembly Errors -- 3.4.3.1 Waveguide Flange Connection Discontinuity -- 3.4.3.2 Influence of Waveguide Inner Wall Roughness -- 3.4.3.3 Effect of Temperature Drift of T/R Components.
3.4.4 Effect of Mutual Coupling of Radiation Elements on the Radiation Performance of Antennas -- 3.4.5 Theoretical Model of Electromagnetic-Displacement-Temperature Fields Coupling -- 3.4.6 Experiment -- 3.4.6.1 Basic Parameters -- 3.4.6.2 Basic Ideas -- 3.4.6.3 Working Conditions and Array Surface Errors -- 3.4.6.4 Measurement and Environment -- 3.4.6.5 Calculated and Measured Results -- 3.5 High‐density Cabinets -- 3.5.1 Effect of Contact Gaps -- 3.5.2 Effect of Heat Sink Holes and Structural Deformation -- 3.5.3 Theoretical Model of Electromagnetic-Displacement-Temperature Fields Coupling -- 3.5.4 Experiment -- 3.5.4.1 Basic Parameters -- 3.5.4.2 Measurement and Environment -- 3.5.4.3 Calculated and Measured Results -- References -- Chapter 4 Solving Strategy and Method of the Multifield Coupling Problem of Electronic Equipment -- 4.1 Introduction -- 4.2 Solving Strategy of the Multifield Coupling Problem -- 4.3 Solving Method of the Multifield Coupling Problem -- 4.3.1 Solution Method of Direct Coupling Analysis -- 4.3.2 Solution Method of Sequential Coupling Analysis -- 4.3.3 Solution Method for Mathematical Decoupling Analysis -- 4.3.4 Solution Method of Integrated Optimization Analysis -- 4.4 General Approach Method of the Multifield Coupling Problem -- 4.4.1 Neighborhood Interpolation Method -- 4.4.2 Mapping Method -- 4.4.3 Spline Function Interpolation Method -- 4.4.4 Continuation Method -- 4.5 The Mesh Matching Among Different Fields -- 4.5.1 Generated Directly in the Structural Finite Element Mesh -- 4.5.2 Mesh Mapping from Structure to EM -- 4.6 Mesh Transformation and Information Transfer -- 4.6.1 Transmission of Deformation Information -- 4.6.2 Extraction of Deformed Meshes -- References -- Chapter 5 Influence Mechanism (IM) of Nonlinear Factors of Antenna‐Servo‐Feeder Systems on Performance -- 5.1 Introduction.
5.2 Data Mining of ISFP -- 5.2.1 Data Modeling Method -- 5.2.2 Acquisition of Data Samples -- 5.2.2.1 Building the Initial Data Warehouse -- 5.2.2.2 Obtaining the Data Samples Needed for Modeling -- 5.2.2.3 Data Conversion and Normalized Processing -- 5.2.3 Multicore Regression Method for Data Mining -- 5.2.4 Application of Data Mining -- 5.3 ISFP of Reflector Antennas -- 5.3.1 Data Collection and Mining -- 5.3.2 The Establishment of an Analysis Model of the Influence Mechanism -- 5.3.3 Experiment -- 5.4 ISFP of Planar Slotted Waveguide Array Antennas -- 5.4.1 Hierarchical Relationship Model of Structural Factors and Electrical Properties -- 5.4.2 Influence of Structural Factors on the Amplitude Phase of a Unit in a Radiated Functional Component -- 5.4.2.1 Influence of Slot Deviation on Conductance and Resonance Length -- 5.4.2.2 The Relationship Between Frequency and Admittance, Amplitude Phase -- 5.4.2.3 Influence of Waveguide Wall Thickness on Admittance, Amplitude Phase -- 5.4.2.4 Influence of Slot Width on Admittance, Amplitude Phase -- 5.4.2.5 Influence of Slot Length on Amplitude and Phase -- 5.4.3 Influence of Structural Factors on the Amplitude Phase of a Unit in a Coupling Functional Component -- 5.4.3.1 Influence of the Inclination Angle of the Slot on the Resonance Length and Resonance Resistance -- 5.4.3.2 Influence of Inclination Angle and Slot Length on Amplitude and Phase -- 5.4.3.3 Influence of Waveguide Wall Thickness on Impedance, Amplitude Phase -- 5.4.3.4 Influence of Slot Width on Impedance, Amplitude Phase -- 5.4.4 Influence of Structural Factors on Voltage Standing Wave Ratio in the Excitation Functional Components -- 5.4.4.1 Weighting Analysis of the Influence of the structural Factors on the Amplitude and Phase in the Incentive Function Component -- 5.4.4.2 Results and Discussion -- 5.4.5 Prototype Design and Experiment.
5.5 ISFP of Microwave Feeder and Filters -- 5.5.1 Hierarchical Relationship Model of the Influence of Structural Factors on the Resonant Cavity Filters -- 5.5.2 Influence of Structural Factors on the No‐load Q Value of the Resonant Cavity -- 5.5.2.1 Influence of Geometric Shape, Size, and Position Deviation on the No‐load Q Value -- 5.5.2.2 Relationship Between Surface Roughness and Equivalent Conductivity -- 5.5.2.3 Relationship Between Coating Quality and Equivalent Conductivity -- 5.5.2.4 Influence of Coaxial Cavity Assembly Connection Quality on No‐load Q Value -- 5.5.3 Influence of Structural Factors on the Coupling Coefficient -- 5.5.3.1 Influence of Coupling Hole Structure Factors on the Coupling Coefficient -- 5.5.3.2 Analysis of the Influence of the Position and Size of the Coupling Diaphragm and the Length of the Resonant Rod on the Coupling Coefficient -- 5.5.4 Influence of Tuning Screw on Resonance Frequency and Coupling Coefficient -- 5.5.4.1 Effect of Screw‐in Depth on Resonant Frequency -- 5.5.4.2 Relationship of the Influence of the Tuning Screw on the Coupling Coefficient -- 5.5.5 Influence of Structural Factors on the Power Capacity of Microwave Filters -- 5.5.6 Prototype Production and Experiment -- 5.6 ISFP of Radar‐Servo Mechanism -- 5.6.1 Influence of Clearance on the Performance of the Servo System -- 5.6.1.1 Influence of Gear Meshing Clearance -- 5.6.1.2 Influence of Bearing Clearance -- 5.6.2 Influence of Friction on the Performance of the Servo System -- 5.6.2.1 Influence of Gear Meshing Friction -- 5.6.2.2 Influence of Bearing Friction -- 5.6.3 Construction of Servo System Prototype and Experiment -- 5.6.3.1 Servo System Prototype -- 5.6.3.2 Experiment -- 5.7 ISFP of Active Phased Array Antennas with Radiating Arrays -- 5.7.1 Decomposition and Accuracy Transfer of Multilayer Conformal Surfaces.
5.7.1.1 Decomposition of Multilayer Conformal Surfaces.
Record Nr. UNINA-9910829907903321
Duan Baoyan  
Hoboken, New Jersey : , : John Wiley & Sons, , [2023]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Electromechanical Coupling Theory, Methodology and Applications for High-Performance Microwave Equipment
Electromechanical Coupling Theory, Methodology and Applications for High-Performance Microwave Equipment
Autore Duan Baoyan
Pubbl/distr/stampa Newark : , : John Wiley & Sons, Incorporated, , 2022
Descrizione fisica 1 online resource (339 pages)
Altri autori (Persone) ZhangShuxin
ISBN 1-119-90442-0
1-119-90440-4
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Cover -- Title Page -- Copyright -- Contents -- About the Authors -- Preface -- Chapter 1 Background of Electromechanical Coupling of Electronic Equipment -- 1.1 Introduction -- 1.2 Characteristics of Electronic Equipment -- 1.3 Components of Electronic Equipment -- 1.3.1 Mechanical and Structural Part of Electronic Equipment -- 1.3.2 Electrical Part of Electronic Equipment -- 1.4 On research of Electromechanical Coupling (EMC) of Electronic Equipment -- 1.4.1 Current Status of Research on Electromechanical Coupling of Electronic Equipment -- 1.4.2 The Development Trends of Electronic Equipment -- 1.4.2.1 High Frequency and High Gain -- 1.4.2.2 Broad Bandwidth, Multiband, and High Power -- 1.4.2.3 High Density and Miniaturization -- 1.4.2.4 Fast Response and High Pointing Accuracy -- 1.4.2.5 Good Environmental Adaptability -- 1.4.2.6 Integration -- 1.4.2.7 Intelligence -- 1.5 Problem of the Traditional Design Method of Electronic Equipment -- 1.5.1 Traditional Design Method and Problems with Electronic Equipment -- 1.5.2 The Electromechanical Coupling Problem of Electronic Equipment and Its Solution -- 1.6 Main Science and Technology Respects of Design for Electronic Equipment -- 1.6.1 Holism of Electronic Equipment System Design -- 1.6.2 Electromechanical Coupling Theory of Electronic Equipment -- 1.6.3 Test and Evaluation Methods of Electronic Equipment -- 1.6.4 Environmental Adaptability (Thermal, Vibration, and EMC) and Reliability of Electronic Equipment -- 1.6.5 Special Electronic Equipment -- 1.6.6 Electromechanical Coupling Design of Electronic Equipment -- 1.6.6.1 Electromechanical Coupling Design of Antennas -- 1.6.6.2 Integrated Design of Radar Antenna Servo System -- 1.6.6.3 Coupling Design of High‐Density Chassis -- 1.7 Mechatronics Marching Toward Coupling Between Mechanical and Electronic Technologies -- References.
Chapter 2 Fundamental of Establishing Multifield Coupling Theoretical Model of Electronic Equipment -- 2.1 Introduction -- 2.2 Mathematical Description of Electromagnetic (EM), Structural Deformation (S), and Temperature (T) Fields -- 2.2.1 Electromagnetic Field -- 2.2.2 Structural Displacement Field -- 2.2.3 Temperature Field -- 2.3 Consideration of Establishing Multifield Coupling Model -- References -- Chapter 3 Multifield Coupling Models of Four Kinds of Typical Electronic Equipment -- 3.1 Introduction -- 3.2 Reflector Antennas -- 3.2.1 Influence of Main Reflector Deformation -- 3.2.2 Influence of the Feed Position Error -- 3.2.3 Effect of Feed Pointing Error -- 3.2.4 Electromechanical Two‐field Coupling Model -- 3.2.5 Dual Reflector Antenna -- 3.2.6 Experiment -- 3.2.6.1 Basic Parameters -- 3.2.6.2 The Basic Idea of the Experiment -- 3.2.6.3 Working Conditions and Deformation -- 3.2.6.4 Measurement and Environment -- 3.2.6.5 Calculated and Measured Results -- 3.3 Planar Slotted Waveguide Array Antennas -- 3.3.1 Effect of Position Error of the Radiation Slot -- 3.3.2 Effect of Radiation Slot Pointing Deflection -- 3.3.3 Effect of Seam Cavity Deformation on Radiation Seam Voltage -- 3.3.4 Two‐field Electromechanical Coupling Model -- 3.3.5 Experiment -- 3.3.5.1 Basic Parameters -- 3.3.5.2 Basic Idea -- 3.3.5.3 Working Condition and Deformation -- 3.3.5.4 Testing and Environment -- 3.3.5.5 Calculated and Measured Results -- 3.4 Active Phased Array Antennas -- 3.4.1 Effect of Change of Position and Attitude of the Radiation Unit -- 3.4.2 Effect of Array Surface Manufacturing and Assembly Errors -- 3.4.3 Effect of Radiation Array Element Manufacturing and Assembly Errors -- 3.4.3.1 Waveguide Flange Connection Discontinuity -- 3.4.3.2 Influence of Waveguide Inner Wall Roughness -- 3.4.3.3 Effect of Temperature Drift of T/R Components.
3.4.4 Effect of Mutual Coupling of Radiation Elements on the Radiation Performance of Antennas -- 3.4.5 Theoretical Model of Electromagnetic-Displacement-Temperature Fields Coupling -- 3.4.6 Experiment -- 3.4.6.1 Basic Parameters -- 3.4.6.2 Basic Ideas -- 3.4.6.3 Working Conditions and Array Surface Errors -- 3.4.6.4 Measurement and Environment -- 3.4.6.5 Calculated and Measured Results -- 3.5 High‐density Cabinets -- 3.5.1 Effect of Contact Gaps -- 3.5.2 Effect of Heat Sink Holes and Structural Deformation -- 3.5.3 Theoretical Model of Electromagnetic-Displacement-Temperature Fields Coupling -- 3.5.4 Experiment -- 3.5.4.1 Basic Parameters -- 3.5.4.2 Measurement and Environment -- 3.5.4.3 Calculated and Measured Results -- References -- Chapter 4 Solving Strategy and Method of the Multifield Coupling Problem of Electronic Equipment -- 4.1 Introduction -- 4.2 Solving Strategy of the Multifield Coupling Problem -- 4.3 Solving Method of the Multifield Coupling Problem -- 4.3.1 Solution Method of Direct Coupling Analysis -- 4.3.2 Solution Method of Sequential Coupling Analysis -- 4.3.3 Solution Method for Mathematical Decoupling Analysis -- 4.3.4 Solution Method of Integrated Optimization Analysis -- 4.4 General Approach Method of the Multifield Coupling Problem -- 4.4.1 Neighborhood Interpolation Method -- 4.4.2 Mapping Method -- 4.4.3 Spline Function Interpolation Method -- 4.4.4 Continuation Method -- 4.5 The Mesh Matching Among Different Fields -- 4.5.1 Generated Directly in the Structural Finite Element Mesh -- 4.5.2 Mesh Mapping from Structure to EM -- 4.6 Mesh Transformation and Information Transfer -- 4.6.1 Transmission of Deformation Information -- 4.6.2 Extraction of Deformed Meshes -- References -- Chapter 5 Influence Mechanism (IM) of Nonlinear Factors of Antenna‐Servo‐Feeder Systems on Performance -- 5.1 Introduction.
5.2 Data Mining of ISFP -- 5.2.1 Data Modeling Method -- 5.2.2 Acquisition of Data Samples -- 5.2.2.1 Building the Initial Data Warehouse -- 5.2.2.2 Obtaining the Data Samples Needed for Modeling -- 5.2.2.3 Data Conversion and Normalized Processing -- 5.2.3 Multicore Regression Method for Data Mining -- 5.2.4 Application of Data Mining -- 5.3 ISFP of Reflector Antennas -- 5.3.1 Data Collection and Mining -- 5.3.2 The Establishment of an Analysis Model of the Influence Mechanism -- 5.3.3 Experiment -- 5.4 ISFP of Planar Slotted Waveguide Array Antennas -- 5.4.1 Hierarchical Relationship Model of Structural Factors and Electrical Properties -- 5.4.2 Influence of Structural Factors on the Amplitude Phase of a Unit in a Radiated Functional Component -- 5.4.2.1 Influence of Slot Deviation on Conductance and Resonance Length -- 5.4.2.2 The Relationship Between Frequency and Admittance, Amplitude Phase -- 5.4.2.3 Influence of Waveguide Wall Thickness on Admittance, Amplitude Phase -- 5.4.2.4 Influence of Slot Width on Admittance, Amplitude Phase -- 5.4.2.5 Influence of Slot Length on Amplitude and Phase -- 5.4.3 Influence of Structural Factors on the Amplitude Phase of a Unit in a Coupling Functional Component -- 5.4.3.1 Influence of the Inclination Angle of the Slot on the Resonance Length and Resonance Resistance -- 5.4.3.2 Influence of Inclination Angle and Slot Length on Amplitude and Phase -- 5.4.3.3 Influence of Waveguide Wall Thickness on Impedance, Amplitude Phase -- 5.4.3.4 Influence of Slot Width on Impedance, Amplitude Phase -- 5.4.4 Influence of Structural Factors on Voltage Standing Wave Ratio in the Excitation Functional Components -- 5.4.4.1 Weighting Analysis of the Influence of the structural Factors on the Amplitude and Phase in the Incentive Function Component -- 5.4.4.2 Results and Discussion -- 5.4.5 Prototype Design and Experiment.
5.5 ISFP of Microwave Feeder and Filters -- 5.5.1 Hierarchical Relationship Model of the Influence of Structural Factors on the Resonant Cavity Filters -- 5.5.2 Influence of Structural Factors on the No‐load Q Value of the Resonant Cavity -- 5.5.2.1 Influence of Geometric Shape, Size, and Position Deviation on the No‐load Q Value -- 5.5.2.2 Relationship Between Surface Roughness and Equivalent Conductivity -- 5.5.2.3 Relationship Between Coating Quality and Equivalent Conductivity -- 5.5.2.4 Influence of Coaxial Cavity Assembly Connection Quality on No‐load Q Value -- 5.5.3 Influence of Structural Factors on the Coupling Coefficient -- 5.5.3.1 Influence of Coupling Hole Structure Factors on the Coupling Coefficient -- 5.5.3.2 Analysis of the Influence of the Position and Size of the Coupling Diaphragm and the Length of the Resonant Rod on the Coupling Coefficient -- 5.5.4 Influence of Tuning Screw on Resonance Frequency and Coupling Coefficient -- 5.5.4.1 Effect of Screw‐in Depth on Resonant Frequency -- 5.5.4.2 Relationship of the Influence of the Tuning Screw on the Coupling Coefficient -- 5.5.5 Influence of Structural Factors on the Power Capacity of Microwave Filters -- 5.5.6 Prototype Production and Experiment -- 5.6 ISFP of Radar‐Servo Mechanism -- 5.6.1 Influence of Clearance on the Performance of the Servo System -- 5.6.1.1 Influence of Gear Meshing Clearance -- 5.6.1.2 Influence of Bearing Clearance -- 5.6.2 Influence of Friction on the Performance of the Servo System -- 5.6.2.1 Influence of Gear Meshing Friction -- 5.6.2.2 Influence of Bearing Friction -- 5.6.3 Construction of Servo System Prototype and Experiment -- 5.6.3.1 Servo System Prototype -- 5.6.3.2 Experiment -- 5.7 ISFP of Active Phased Array Antennas with Radiating Arrays -- 5.7.1 Decomposition and Accuracy Transfer of Multilayer Conformal Surfaces.
5.7.1.1 Decomposition of Multilayer Conformal Surfaces.
Record Nr. UNINA-9910632498203321
Duan Baoyan  
Newark : , : John Wiley & Sons, Incorporated, , 2022
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Large Deployable Satellite Antennas : Design Theory, Methods and Applications / / by Baoyan Duan, Yiqun Zhang, Jingli Du
Large Deployable Satellite Antennas : Design Theory, Methods and Applications / / by Baoyan Duan, Yiqun Zhang, Jingli Du
Autore Duan Baoyan
Edizione [1st ed. 2020.]
Pubbl/distr/stampa Singapore : , : Springer Nature Singapore : , : Imprint : Springer, , 2020
Descrizione fisica 1 online resource (xix, 271 pages) : illustrations
Disciplina 621.38254
Collana Springer Tracts in Mechanical Engineering
Soggetto topico Aerospace engineering
Astronautics
Statics
Electrical engineering
Aerospace Technology and Astronautics
Mechanical Statics and Structures
Electrical and Electronic Engineering
ISBN 981-15-6033-1
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Introduction -- Space Service Environment -- Cable-net Design and Analysis of Cable-truss Structure -- Analysis and Control of Flexible Multibody Deployment Process -- Electrical Properties Analysis and Equivalent of Mesh Reflector Antenna -- Surface Precision Measurement and Adjustment of Cable-truss Structure -- Deployment Reliability Analysis of Cable-truss Antenna -- Development and Experiment of Prototype Antenna -- Integrated Design Software Platform -- Space Deployable Antenna Synthetic Design Software -- Electrostatic Forming Membrane Reflector Antenna. .
Record Nr. UNINA-9910407736903321
Duan Baoyan  
Singapore : , : Springer Nature Singapore : , : Imprint : Springer, , 2020
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui