Maximal Cohen-Macaulay modules over non-isolated surface singularities and matrix problems / / Igor Burban, Yuriy Drozd
| Maximal Cohen-Macaulay modules over non-isolated surface singularities and matrix problems / / Igor Burban, Yuriy Drozd |
| Autore | Burban Igor <1977-> |
| Pubbl/distr/stampa | Providence, Rhode Island : , : American Mathematical Society, , 2017 |
| Descrizione fisica | 1 online resource (134 pages) |
| Disciplina | 512/.44 |
| Collana | Memoirs of the American Mathematical Society |
| Soggetto topico |
Cohen-Macaulay modules
Modules (Algebra) Singularities (Mathematics) |
| Soggetto genere / forma | Electronic books. |
| ISBN | 1-4704-4058-X |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Record Nr. | UNINA-9910480366803321 |
Burban Igor <1977->
|
||
| Providence, Rhode Island : , : American Mathematical Society, , 2017 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Maximal Cohen-Macaulay modules over non-isolated surface singularities and matrix problems / / Igor Burban, Yuriy Drozd
| Maximal Cohen-Macaulay modules over non-isolated surface singularities and matrix problems / / Igor Burban, Yuriy Drozd |
| Autore | Burban Igor <1977-> |
| Pubbl/distr/stampa | Providence, Rhode Island : , : American Mathematical Society, , 2017 |
| Descrizione fisica | 1 online resource (134 pages) |
| Disciplina | 512/.44 |
| Collana | Memoirs of the American Mathematical Society |
| Soggetto topico |
Cohen-Macaulay modules
Modules (Algebra) Singularities (Mathematics) |
| ISBN | 1-4704-4058-X |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto | Introduction, motivation, and historical remarks -- Generalities on maximal Cohen-Macaulay modules -- Category of triples in dimension one -- Main construction -- Serre quotients and proof of main theorem -- Singularities obtained by gluing cyclic quotient singularities -- Maximal Cohen-Macaulay modules over k[x,y,z]/(x p2 s+y p3 s-xyz) -- Representations of decorated bundles of chans - I -- Maximal Cohen-Macaulay modules over degenerate cusps - I -- Maximal Cohen-Macaulay modules over degenerate cusps - II -- Schreyer's question -- Remarks on rings of discrete and tame CM-representation type -- Representations of decorated bunches of chans - II. |
| Record Nr. | UNINA-9910794995303321 |
Burban Igor <1977->
|
||
| Providence, Rhode Island : , : American Mathematical Society, , 2017 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Maximal Cohen-Macaulay modules over non-isolated surface singularities and matrix problems / / Igor Burban, Yuriy Drozd
| Maximal Cohen-Macaulay modules over non-isolated surface singularities and matrix problems / / Igor Burban, Yuriy Drozd |
| Autore | Burban Igor <1977-> |
| Pubbl/distr/stampa | Providence, Rhode Island : , : American Mathematical Society, , 2017 |
| Descrizione fisica | 1 online resource (134 pages) |
| Disciplina | 512/.44 |
| Collana | Memoirs of the American Mathematical Society |
| Soggetto topico |
Cohen-Macaulay modules
Modules (Algebra) Singularities (Mathematics) |
| ISBN | 1-4704-4058-X |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto | Introduction, motivation, and historical remarks -- Generalities on maximal Cohen-Macaulay modules -- Category of triples in dimension one -- Main construction -- Serre quotients and proof of main theorem -- Singularities obtained by gluing cyclic quotient singularities -- Maximal Cohen-Macaulay modules over k[x,y,z]/(x p2 s+y p3 s-xyz) -- Representations of decorated bundles of chans - I -- Maximal Cohen-Macaulay modules over degenerate cusps - I -- Maximal Cohen-Macaulay modules over degenerate cusps - II -- Schreyer's question -- Remarks on rings of discrete and tame CM-representation type -- Representations of decorated bunches of chans - II. |
| Record Nr. | UNINA-9910809969503321 |
Burban Igor <1977->
|
||
| Providence, Rhode Island : , : American Mathematical Society, , 2017 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||