top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
3D Printing of Pharmaceutical and Drug Delivery Devices : Progress from Bench to Bedside
3D Printing of Pharmaceutical and Drug Delivery Devices : Progress from Bench to Bedside
Autore Lamprou Dimitrios A.
Edizione [First eddition.]
Pubbl/distr/stampa Newark : , : John Wiley & Sons, Incorporated, , 2024
Descrizione fisica 1 online resource (265 pages)
Disciplina 615.19
Altri autori (Persone) DouroumisDennis
QiSheng
Collana Advances in Pharmaceutical Technology Series
ISBN 1-119-83600-X
1-119-83598-4
1-119-83599-2
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Intro -- 3D Printing of Pharmaceutical and Drug Delivery Devices -- Contents -- About the Editors -- List of Contributors -- Series Preface -- Preface -- 1 Materials for 3D Printing -- 1.1 Introduction -- 1.2 Material Processability Considerations for Pharmaceutical 3DP -- 1.2.1 Thermal Extrusion-Based 3D Printing -- 1.2.1.1 Thermal Considerations -- 1.2.1.2 Solubility Enhancement -- 1.2.1.3 Mechanical Considerations -- 1.2.2 Semi-Solid Extrusion 3DP -- 1.2.2.1 Rheological Considerations -- 1.2.2.2 Example Applications -- 1.2.3 Powder Bed Fusion 3D Printing -- 1.2.3.1 Powder Flowability Considerations -- 1.2.3.2 Powder Packing Density Considerations -- 1.2.3.3 Powder Energy Absorbance Considerations -- 1.2.4 Stereolithography 3D Printing -- 1.3 Classification of Common Materials Used in Pharmaceutical 3DP -- 1.3.1 Alcohol Derived Polymers -- 1.3.2 Eudragits -- 1.3.3 Other Polymers -- 1.3.4 Graft Polymers -- 1.3.5 Photocrosslinkable -- 1.3.6 Natural Materials -- 1.3.7 Lipid Materials -- 1.4 Conclusions and Future Perspectives -- References -- 2 The Use of Microstructure Design and 3D Printing for Tailored Drug Release -- 2.1 Introduction -- 2.2 3D-Printing Technologies -- 2.3 3D Design for Drug-Loaded Device -- 2.3.1 CAD Design-Based Design -- 2.3.2 Computational Software-Based Design -- 2.3.3 3D-Printing Parameter-Based Design -- 2.3.4 Polypills and Complex Designs -- 2.4 3D Designs Influence Drug Release -- 2.4.1 Controlling Drug Release -- 2.4.2 Modifying Drug Release -- 2.5 Challenges and Perspective -- References -- 3 3D Printing of Oral Solid Dosage Forms Using Selective Laser Sintering -- 3.1 Introduction -- 3.2 Operational Principles of Selective Laser Sintering -- 3.2.1 Manufacturing Challenges for SLS -- 3.2.2 Laser Selection and Scanning Speed -- 3.2.3 Powder Material Parameters -- 3.2.4 Powder Bed and Recoater Parameters.
3.3 3D-Printed Oral Dosages -- 3.4 Advantages of SLS -- 3.4.1 Printing Features -- 3.4.2 Control of Surface Properties -- 3.4.3 Printing of Complex Geometries -- 3.4.4 Using a Wide Range of Materials -- 3.4.5 Drug Loading and Dose Combinations -- 3.4.6 Personalised Dosage Forms -- 3.4.7 SLS Disadvantages -- 3.5 Conclusions -- References -- 4 3D Printing for Medical Device Applications -- 4.1 Introduction -- 4.2 3D Printers -- 4.2.1 SLA -- 4.2.2 FFF -- 4.2.3 Selective Laser Sintering (SLS) -- 4.3 Biomaterials for 3D-Printed Medical Devices -- 4.3.1 Bioresorbable Polymers -- 4.3.1.1 Synthetic Bioresorbable Polymers -- 4.3.1.2 Natural Bioresorbable Polymers -- 4.3.2 Non-Bioresorbable Polymers -- 4.3.3 Smart Polymers -- 4.3.4 Metal and Ceramic -- 4.4 3D-Printed Personalised Medical Devices -- 4.4.1 Vascular Repair Devices -- 4.4.2 Splints -- 4.4.3 Nerve Guidance Conduits -- 4.4.4 Tissue Engineering -- 4.4.5 3D Printing in Dentistry -- 4.4.6 3D-Printed Orthopaedic Devices -- 4.5 Regulatory -- 4.6 Future Perspectives -- References -- 5 3D Printed Implants for Long-Acting Drug Delivery -- 5.1 Introduction -- 5.2 Types of 3D-Printed Scaffolds -- 5.2.1 Implantable Scaffolds -- 5.2.1.1 Passive Implants -- 5.2.1.2 Active Implants -- 5.2.2 Injectable Scaffolds -- 5.2.3 Innovative 3D-Printed Scaffolds -- 5.3 Critical Parameters in Designing 3D-Printed Implantable Scaffolds -- 5.3.1 Structural Characteristics -- 5.3.1.1 Geometry of Implants -- 5.3.1.2 Porosity Properties and Pore Features -- 5.3.1.3 Surface Properties -- 5.3.2 Mechanical Properties -- 5.3.3 Biological and Physiological Parameters -- 5.3.3.1 Cellular Adhesion -- 5.3.3.2 Absorption and Degradation Rates -- 5.3.3.3 Biocompatibility Aspects -- 5.4 Critical Parameters in Selecting Materials for 3D-Printed Scaffolds -- 5.4.1 Materials Used in 3D-Printed Long-Acting Scaffolds -- 5.4.1.1 Natural Polymers.
5.4.1.2 Synthetic Polymers -- 5.4.1.3 Ceramics and Metals -- 5.4.1.4 Composites -- References -- 5.5 Manufacturing Techniques for Implantable Scaffolds -- 5.5.1 Hot-Melt Extrusion -- 5.5.2 Compression -- 5.5.3 Injection Moulding -- 5.5.4 Solvent Casting -- 5.5.5 3D Printing -- 5.5.6 Scale-Up in 3D-Printing Process for the Manufacturing of Scaffolds -- 5.6 Drug Release Mechanism of Long-Acting 3D-Printing Polymeric Implantable Systems -- 5.7 Outlining Regulatory Framework for 3D-Printed Implantable Scaffolds -- 5.7.1 Commercial Implantable Scaffolds -- 5.8 Conclusions -- References -- 6 Wound Dressings by 3D Printing -- 6.1 Wound Healing Process -- 6.1.1 Haemostasis/Coagulation -- 6.1.2 Inflammation -- 6.1.3 Proliferation -- 6.1.4 Re-epithelisation/Remodelling -- 6.1.5 Wound Classification -- 6.1.6 Wound Dressings -- 6.1.7 3D Printing -- 6.1.8 3D-Printed Dressings -- 6.2 Case Studies -- 6.3 Summary/Conclusions -- References -- 7 3D Printing of Hydrogels -- 7.1 Introduction -- 7.2 Applications of 3D-Printed Hydrogels -- 7.2.1 Tissue Engineering -- 7.2.2 Wound Healing -- 7.2.3 Drug Delivery -- 7.3 Types of Hydrogel Materials for 3D Printing -- 7.3.1 Natural Polymers -- 7.3.2 Synthetic Polymers -- 7.3.3 Natural-Synthetic Hybrid Polymers -- 7.3.4 Ionically Charged Polymers -- 7.3.5 Crosslinked Polymers -- 7.3.6 Method of Hydrogel Preparation -- 7.4 3D Printing Techniques for Hydrogels -- 7.4.1 Laser-Based 3D Printing -- 7.4.1.1 Stereolithography -- 7.4.1.2 Two-Photon Polymerisation -- 7.4.1.3 Laser-Induced Forward Transfer -- 7.4.2 Extrusion-Based Printing -- 7.4.3 Inkjet-Based Printing -- 7.5 Printability and Printing Parameters -- 7.5.1 Bioink Design -- 7.5.1.1 Materials Selection, Concentration and Viscosity -- 7.5.1.2 Rheological Properties -- 7.5.1.3 Shear-Thinning -- 7.5.1.4 Viscoelasticity and Yield Stress -- 7.5.1.5 Cell Encapsulation.
7.5.2 Crosslinking Techniques -- 7.5.2.1 Thermal Crosslinking -- 7.5.2.2 Physical Ionic Crosslinking -- 7.5.2.3 Chemical Crosslinking -- 7.5.2.4 Photocrosslinking -- 7.5.3 3D Printing Parameters -- 7.5.3.1 Temperature -- 7.5.3.2 Pressure -- 7.5.3.3 Speed -- 7.6 Clinical Translation -- 7.6.1 Regulatory Considerations -- 7.6.2 Manufacturing Considerations -- 7.6.3 Limitations and Future Direction -- 7.7 Conclusions -- References -- 8 Analytical Characterisation of 3D-Printed Medicines -- 8.1 Introduction -- 8.2 Preformulation -- 8.2.1 Thermal Analysis -- 8.2.2 X-Ray Powder Diffraction (XRPD) -- 8.2.3 Infrared Spectroscopy -- 8.2.4 Hot-Stage Microscopy (HSM) -- 8.2.5 Customizsd Sample Preparation for the Preformulation Protocol -- 8.3 In-Process Characterisations -- 8.3.1 Mechanical Analysis -- 8.3.2 Rheological Analysis -- 8.3.3 Drug Characterisation -- 8.4 Final Product -- 8.4.1 Morphological Analysis -- 8.4.2 X-Ray Computed Microtomography (XμCT) -- 8.4.3 Terahertz Pulsed Imaging (TPI) -- 8.4.4 Mercury Porosimetry -- 8.4.5 Helium Pycnometry -- 8.5 Conclusions -- References -- 9 Adoption of 3D Printing in Pharmaceutical Industry -- 9.1 Partnering and Growing -- 9.2 Regulatory Strategy -- 9.2.1 Product Development -- 9.2.2 Manufacturing -- 9.3 Business Model -- 9.3.1 In-House Pipeline Products -- 9.3.2 Co-Development -- 9.4 Regulatory Strategy -- 9.5 Partnering and Growing -- 9.6 Business Model and Strategy -- 9.6.1 Closing Remarks -- References -- 10 Clinical Benefits of 3D Printing in Healthcare -- 10.1 Introduction -- 10.2 3D Printing Technologies -- 10.2.1 Binder Jetting -- 10.2.2 Vat Photopolymerization -- 10.2.3 Powder Bed Fusion -- 10.2.4 Material Jetting -- 10.2.5 Material Extrusion -- 10.2.5.1 Fused Deposition Modelling -- 10.2.5.2 Semi-Solid Extrusion -- 10.2.5.3 Direct Powder Extrusion -- 10.3 Preclinical Applications of 3D Printing.
10.3.1 Immediate and Modified Release Oral Printlets -- 10.3.2 3D-Printed Drug Delivery Devices for Other Routes of Administration -- 10.4 Clinical Applications of 3D Printing -- 10.4.1 Personalised Medications -- 10.4.2 Improved Acceptability and Medication Compliance -- 10.4.2.1 Paediatric Patients -- 10.4.2.2 Adult and Geriatric Patients -- 10.4.3 Mass Manufacturing -- 10.4.4 Decentralised On-Demand Fabrication -- 10.4.5 Veterinary Applications -- 10.5 Challenges, Regulatory View and Future Applications -- 10.6 Conclusion -- References -- 11 Regulatory Aspects of 3D-Printed Medicinal Products -- 11.1 Introduction -- 11.2 Current Regulatory Framework -- 11.3 Quality Aspects of 3D-Printed Medicinal Products -- 11.4 3D-Printed Paediatric Medicinal Products -- 11.5 3D-Printed Systems With Tailored Release Profiles -- 11.6 Conclusions -- Disclaimer -- References -- Index -- EULA.
Record Nr. UNINA-9910876527503321
Lamprou Dimitrios A.  
Newark : , : John Wiley & Sons, Incorporated, , 2024
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Drug delivery strategies for poorly water-soluble drugs [[electronic resource] /] / edited by Dennis Douroumis and Alfred Fahr
Drug delivery strategies for poorly water-soluble drugs [[electronic resource] /] / edited by Dennis Douroumis and Alfred Fahr
Pubbl/distr/stampa Chichester, West Sussex, : John Wiley & Sons, 2012
Descrizione fisica 1 online resource (644 p.)
Disciplina 615.1
Altri autori (Persone) DouroumisDennis
FahrAlfred
Collana Advances in pharmaceutical technology
Soggetto topico Drug delivery systems
Pharmaceutical chemistry
Drug carriers (Pharmacy)
Solubility
ISBN 1-118-44472-8
1-299-25270-2
1-118-44477-9
1-118-44467-1
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Self-assembled delivery vehicles for poorly water-soluble drugs : basic theoretical considerations and modeling concepts / Silvio May and Alfred Fahr -- Liposome as intravenous solubilizers for poorly water soluble drugs / Peter van Hoogevest, Mathew Leigh and Alfred Fahr -- Drug solubilization and stabilization of cyclodextrin drug carriers / Thorsteinn Loftsson and Marcus Eli Brewster -- Solid lipid nanoparticles for drug delivery / Sonja Joseph and Heike Bunjes -- Polymeric drug delivery systems for encapsulating hydrophobic drugs / Naveed Ahmed, C.E. Mora-Heurtas, Chiraz Jaafar-Maalej, Hatem Fessi and Abdelhamid Elaissari -- Polymeric drug delivery systems for encapsulating hydrophobic drugs / Dagmar Fischer -- Development of self-emulsifying drug delivery systems (SEDDS) for oral ioavailability enhancement of poorly soluble drugs / Dimitrios G. Fatouros and Anette Müllertz -- Novel top-down technologies : effective production of ultra-fine drug nanocrystals / Cornelia.M. Keck, S. Kobierski, R. Mauludin and Rainer H. Müller -- Nanosuspensions with enhanced drug dissolution rates of poorly water-soluble drugs / Dennis Douroumis -- Microemulsions for drug solubilization and delivery / X.Q. Wang and Qiang Zhang -- Enhancing drug solubility and bioavailability using hot melt extruded solid dispersions / Shu Li, David S. Jones and Gavin P. Andrews -- Penetration enhancers, solvents and the skin / Jonathan Hadgraft and Majella E. Lane -- Dendrimers for enhanced drug solubilization / Narendra K. Jain and Rakesh K. Tekade -- Polymeric micelles for the delivery of poorly soluble drugs / Swati Biswas, Onkar S.Vaze, Sara Movassaghian and Vladimir P. Torchilin -- Nanostructured silicon-based materials as a drug delivery system for water insoluble drugs / Vesa-Pekka Lehto, Jarno Salonen, Helder Santos and Joakim Riikonen -- Micro- and nanosizing of poorly soluble drugs by grinding techniques / Stefan Scheler -- Enhanced solubility of poorly soluble drugs via spray drying / Cordin Arpagaus, David Rütti and Marco Meuri.
Record Nr. UNINA-9910141512303321
Chichester, West Sussex, : John Wiley & Sons, 2012
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Drug delivery strategies for poorly water-soluble drugs / / edited by Dennis Douroumis and Alfred Fahr
Drug delivery strategies for poorly water-soluble drugs / / edited by Dennis Douroumis and Alfred Fahr
Edizione [1st ed.]
Pubbl/distr/stampa Chichester, West Sussex, : John Wiley & Sons, 2012
Descrizione fisica 1 online resource (644 p.)
Disciplina 615.1
Altri autori (Persone) DouroumisDennis
FahrAlfred
Collana Advances in pharmaceutical technology
Soggetto topico Drug delivery systems
Pharmaceutical chemistry
Drug carriers (Pharmacy)
Solubility
ISBN 1-118-44472-8
1-299-25270-2
1-118-44477-9
1-118-44467-1
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Self-assembled delivery vehicles for poorly water-soluble drugs : basic theoretical considerations and modeling concepts / Silvio May and Alfred Fahr -- Liposome as intravenous solubilizers for poorly water soluble drugs / Peter van Hoogevest, Mathew Leigh and Alfred Fahr -- Drug solubilization and stabilization of cyclodextrin drug carriers / Thorsteinn Loftsson and Marcus Eli Brewster -- Solid lipid nanoparticles for drug delivery / Sonja Joseph and Heike Bunjes -- Polymeric drug delivery systems for encapsulating hydrophobic drugs / Naveed Ahmed, C.E. Mora-Heurtas, Chiraz Jaafar-Maalej, Hatem Fessi and Abdelhamid Elaissari -- Polymeric drug delivery systems for encapsulating hydrophobic drugs / Dagmar Fischer -- Development of self-emulsifying drug delivery systems (SEDDS) for oral ioavailability enhancement of poorly soluble drugs / Dimitrios G. Fatouros and Anette Müllertz -- Novel top-down technologies : effective production of ultra-fine drug nanocrystals / Cornelia.M. Keck, S. Kobierski, R. Mauludin and Rainer H. Müller -- Nanosuspensions with enhanced drug dissolution rates of poorly water-soluble drugs / Dennis Douroumis -- Microemulsions for drug solubilization and delivery / X.Q. Wang and Qiang Zhang -- Enhancing drug solubility and bioavailability using hot melt extruded solid dispersions / Shu Li, David S. Jones and Gavin P. Andrews -- Penetration enhancers, solvents and the skin / Jonathan Hadgraft and Majella E. Lane -- Dendrimers for enhanced drug solubilization / Narendra K. Jain and Rakesh K. Tekade -- Polymeric micelles for the delivery of poorly soluble drugs / Swati Biswas, Onkar S.Vaze, Sara Movassaghian and Vladimir P. Torchilin -- Nanostructured silicon-based materials as a drug delivery system for water insoluble drugs / Vesa-Pekka Lehto, Jarno Salonen, Helder Santos and Joakim Riikonen -- Micro- and nanosizing of poorly soluble drugs by grinding techniques / Stefan Scheler -- Enhanced solubility of poorly soluble drugs via spray drying / Cordin Arpagaus, David Rütti and Marco Meuri.
Record Nr. UNINA-9910817900703321
Chichester, West Sussex, : John Wiley & Sons, 2012
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Nanotechnology in Therapeutics : Basics and Trends
Nanotechnology in Therapeutics : Basics and Trends
Autore Demetzos Costas
Edizione [1st ed.]
Pubbl/distr/stampa Newark : , : John Wiley & Sons, Incorporated, , 2024
Descrizione fisica 1 online resource (303 pages)
Disciplina 615/.6
Altri autori (Persone) DouroumisDennis
SnowdenMartin J
FahrAlfred
SiepmannJuergen
TorchilinVladimir P
Collana Advances in Pharmaceutical Technology Series
Soggetto topico Nanomedicine
Nanoparticles
ISBN 1-394-27408-4
1-394-27406-8
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Cover -- Series Page -- Title Page -- Copyright Page -- Dedication Page -- Contents -- About the Author -- Foreword -- Advances in Pharmaceutical Technology: Series Preface -- Preface -- Acknowledgments -- List of Abbreviations -- List of Figures -- List of Tables -- Part A Nanotechnology: Introduction and Brief Historical Overview -- Chapter 1 Introduction and Applications of Nanotechnology -- 1.1 Nanotechnology: Introduction and Brief Historical Overview -- 1.2 An Overview of Nanomedicines -- 1.3 Nanomedicine -- 1.4 The Strategic Research and Innovation Agenda for anomedicine (SRIA) 2016-2030 (www.etp-nanomedicine.eu) -- References -- Chapter 2 Biophysics, Thermodynamics, and Stability of Colloidal Dispersion Nanosystems -- 2.1 The Eukaryotic Cell Membranes -- 2.1.1 Structure and Function of Cell Membranes -- 2.1.2 Thermodynamic Properties of the Lipid Bilayers of Cell Membranes -- 2.2 Liquid Crystals (LCs) -- 2.2.1 Thermotropic and Lyotropic Liquid Crystals -- 2.3 Liquid Crystals in Biological Systems -- 2.4 The Role of Lipidic Domains in Cell Membranes -- 2.4.1 Lipid Conformational and Motional Properties -- 2.5 Dispersion Nanosystems -- 2.6 Stability of Nanocolloidal Dispersion Systems -- 2.6.1 Fundamentals of DLVO Theory -- 2.7 The DLVO Theory -- 2.7.1 Historical Background in Brief -- 2.7.2 Extension of the Classic DLVO Theory -- 2.7.3 Classification of Hydration Forces During the Interaction of Nanoparticles of a Colloidal Dispersion System -- 2.7.4 Entropic Effect -- 2.7.5 Osmotic Effect -- 2.7.6 Enthalpic Stabilization -- 2.8 Introduction to Applied Thermodynamics and Biothermodynamics -- 2.8.1 Introduction to Thermodynamics -- 2.8.2 Small System Thermodynamics -- 2.8.3 Comparison of Thermal Analysis with Other Analytical Techniques -- 2.8.4 Classification of Thermal Analysis Techniques.
2.8.5 Differential Scanning Calorimetry: Basic Principles -- 2.8.6 Polymorphism - Lyotropism -- 2.8.7 Differential Scanning Calorimetry (DSC) Types -- 2.9 Light Scattering Techniques -- 2.9.1 Photon Correlation Spectroscopy (PCS) -- 2.10 Microscopy -- 2.10.1 Optical Microscopy -- 2.10.2 Electron Microscopy -- 2.10.3 Scanning Probe Microscopy -- References -- Part B Lipid and Polymeric Nanostructures in Medicine -- Chapter 3 Liposomes: An Overview -- 3.1 Introduction and Historical Issues of Liposomal Technology -- 3.2 Types of Liposomes -- 3.3 Entrapment of Bioactive Molecules in Multilamellar Lipid Vesicles and Liposomes -- 3.4 Advantages of Liposomes -- 3.5 Liposomes as Model of the Cell Membrane and Properties of Their Liquid Crystalline State of Matter -- 3.6 Liposome Physicochemical Characterization and Their Physical Stability -- 3.6.1 Summary of Liposome Preparation Methods -- 3.7 Liposomes as Analytical Tool -- 3.7.1 Biosensors Based on Liposome Technology -- 3.7.2 Future Perspectives in Lipidic Drug Delivery Nanosystems -- References -- Chapter 4 Lipidic and Polymeric Nanomedicines in Clinical Applications -- 4.1 Liposomal Nanomedicines -- 4.1.1 Anticancer Liposomal Medicines -- 4.1.2 Antifungal Liposomal and Lipidic-based Nanomedicines. Case Study of Liposomal and Lipidic-based Amphotericin B -- 4.1.3 Lipid Nanoparticles -- 4.2 Advanced Liposomal Nanomedicines -- 4.2.1 Stimuli-responsive Liposomal Nanosystems -- 4.2.2 Immunoliposomes -- 4.2.3 Mitochondria as Target Domain -- 4.3 Polymers -- 4.3.1 Polyelectrolytes -- 4.4 Polymersomes -- 4.4.1 Polymersome Size and Size Distribution Evaluation -- 4.4.2 Polymersome Properties and Applications -- 4.4.3 Polymersome Surface Chemistry -- 4.4.4 Polymerosome Applications -- 4.5 Biodegradable Polymeric Nanoparticles -- 4.6 Polymeric Micelles -- 4.7 Dendrimers -- 4.7.1 Dendrimer Use in Biomedicine.
4.7.2 Dendrimer Applications -- 4.7.3 Dendrimer Application in Diagnostics with Magnetic Resonance Imaging Technique -- References -- Chapter 5 Applied Nanotechnology -- 5.1 Nanotechnology in Therapeutics -- 5.2 Nanotechnology and Cancer -- 5.3 Nanooncology and Gene Transfer -- 5.4 Nanobiotechnology -- 5.5 Nanogenomics and Nanoproteomics -- 5.6 Delivery Nanosystems for Therapeutic Biological Products -- 5.7 New Therapies Based on Nanotechnology -- 5.8 Theranostics -- 5.8.1 Theranostics: Applications in the Treatment, Diagnosis of Diseases, and Tissue Monitoring -- References -- Chapter 6 Nanotechnology in Vaccines -- 6.1 Introduction to Vaccines -- 6.2 Development of Novel Nanovaccines -- 6.3 Liposomes, Lipid Nanoparticles, and Nonviral Lipid Nanoparticles (Virosomes) -- 6.4 Vaccines Against SARS‐CoV‐2 Virus -- 6.4.1 Stability of Nanovaccines as Nanocolloids -- 6.5 Future Perspectives and the Concept of the "Thermodynamic Epitope" -- 6.6 LNPs‐based Nanovaccines in Clinical Applications -- 6.6.1 Comirnaty® -- 6.6.2 Spikevax -- References -- Part C Nanotechnology and Nanomedicine: The Regulatory Landscape -- Chapter 7 New Health Technologies and Regulatory Approaches -- 7.1 New Health Technologies and the Regulatory Landscape for the Approval Process -- 7.2 Nanoinformatics -- 7.2.1 Artificial Intelligence (AI) -- 7.3 Complex Systems, Complexity, and Artificial Bionanosystems -- 7.4 Chaos and Nonlinear Dynamics in Nanocolloids -- 7.4.1 Chaotic Dynamic Systems -- 7.4.2 Lyapunov Approximation -- 7.4.3 Linking Lyapunov Exponents to Information -- 7.5 Nanocolloids. Complexity, Chaos, and Stability -- 7.6 Regulatory Agencies -- 7.6.1 Medicine Approval Processes -- 7.7 Advanced Therapy Medicinal Products (ATMPs) -- 7.8 Approval Process for Advanced Therapy Medicinal Products.
7.9 The Regulatory Framework for the Nanobiotechnological Products in the United States and the Role of the FDA -- 7.10 Regulatory Issues for Biotechnological Medicines. The Role of the EMA -- 7.11 Committee for Advanced Therapies (CAT) -- 7.12 Nanosimilars -- 7.13 Generics and Biosimilar Therapeutic Products -- References -- Index -- EULA.
Record Nr. UNINA-9910878995403321
Demetzos Costas  
Newark : , : John Wiley & Sons, Incorporated, , 2024
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui