Deep Learning in Medical Image Analysis
| Deep Learning in Medical Image Analysis |
| Autore | Zhang Yudong |
| Pubbl/distr/stampa | Basel, Switzerland, : MDPI - Multidisciplinary Digital Publishing Institute, 2021 |
| Descrizione fisica | 1 online resource (458 p.) |
| Soggetto non controllato |
1D-convolutional neural network
3D segmentation active surface ARMD artificial intelligence autism bayesian inference black box brain tumor breast cancer cancer cancer prediction cervical cancer change detection classifiers colon cancer computation computed tomography (CT) computer vision computers in medicine convolutional neural network convolutional neural networks COVID-19 CycleGAN data augmentation deep learning deep learning classification dermoscopic images diagnosis diagnostics digital pathology discriminant analysis domain adaptation domain transfer ECG signal detection egocentric camera explainability explainable AI fMRI gibbs sampling glcm matrix HER2 image classification image processing image reconstruction imaging infection detection interpretable/explainable machine learning low-dose lung cancer lung disease detection machine learning machine learning models macroscopic images magnetic resonance imaging (MRI) MCMC medical image analysis medical image segmentation medical images medical imaging melanoma meta-learning microwave breast imaging MRI multimodal learning multiple instance learning musculoskeletal images n/a neo-adjuvant treatment object detection open surgery optimizers PET imaging portable monitoring devices quantitative comparison segmentation shifted-scaled dirichlet distribution skin lesion segmentation sparse-angle surgical tools taxonomy texture analysis transfer learning tumor detection tumour cellularity U-Net unsupervised learning white box whole slide image processing X-ray images XAI |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Record Nr. | UNINA-9910557435103321 |
Zhang Yudong
|
||
| Basel, Switzerland, : MDPI - Multidisciplinary Digital Publishing Institute, 2021 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Pathological Brain Detection / / by Shui-Hua Wang, Yu-Dong Zhang, Zhengchao Dong, Preetha Phillips
| Pathological Brain Detection / / by Shui-Hua Wang, Yu-Dong Zhang, Zhengchao Dong, Preetha Phillips |
| Autore | Wang Shui-Hua |
| Edizione | [1st ed. 2018.] |
| Pubbl/distr/stampa | Singapore : , : Springer Singapore : , : Imprint : Springer, , 2018 |
| Descrizione fisica | 1 online resource (XXVI, 214 p.) |
| Disciplina |
006.6
006.37 |
| Collana | Brain Informatics and Health |
| Soggetto topico |
Optical data processing
Pattern perception Radiology Nervous system - Radiography Image Processing and Computer Vision Pattern Recognition Diagnostic Radiology Neuroradiology |
| ISBN | 981-10-4026-5 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto | 1 Basics of Pathological Brain Detection (PBD) -- 2 Neuroimaging Modalities: Strengths and Weaknesses -- 3 Image Preprocessing for Pathological Brain Detection: A Summary -- 4 Canonical Feature Extraction Methods for Structural Magnetic Resonance Imaging -- 5 Multi-scale and Multi-resolution Features for Structural Magnetic Resonance Imaging -- 6 Dimensionality Reduction of Brain Image Features -- 7 Classification Methods for Pathological Brain Detection -- 8 Weight Optimization of Classifiers for Pathological Brain Detection -- 9 Comparison of Current PBD Systems. |
| Record Nr. | UNINA-9910299309803321 |
Wang Shui-Hua
|
||
| Singapore : , : Springer Singapore : , : Imprint : Springer, , 2018 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||