top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Biodegradable Matrices and Composites
Biodegradable Matrices and Composites
Autore Pegoretti Alessandro
Pubbl/distr/stampa Frontiers Media SA, 2020
Descrizione fisica 1 online resource (310 p.)
Soggetto topico Civil engineering, surveying & building
Mechanical engineering & materials
Soggetto non controllato biodegradability
biodegradable composites
biodegradable polymers
environmental sustainability
material characterization
recyclability
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910557742603321
Pegoretti Alessandro  
Frontiers Media SA, 2020
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Bioepoxy/clay nanocomposites : fabrication optimisation, properties and modelling / / Haipan Salam, Yu Dong
Bioepoxy/clay nanocomposites : fabrication optimisation, properties and modelling / / Haipan Salam, Yu Dong
Autore Salam Haipan
Pubbl/distr/stampa Singapore : , : Springer, , [2021]
Descrizione fisica 1 online resource (244 pages)
Disciplina 620.118
Soggetto topico Nanocomposites (Materials)
ISBN 981-16-7297-0
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNISA-996466851003316
Salam Haipan  
Singapore : , : Springer, , [2021]
Materiale a stampa
Lo trovi qui: Univ. di Salerno
Opac: Controlla la disponibilità qui
Bioepoxy/Clay Nanocomposites : Fabrication Optimisation, Properties and Modelling / / by Haipan Salam, Yu Dong
Bioepoxy/Clay Nanocomposites : Fabrication Optimisation, Properties and Modelling / / by Haipan Salam, Yu Dong
Autore Salam Haipan
Edizione [1st ed. 2021.]
Pubbl/distr/stampa Singapore : , : Springer Nature Singapore : , : Imprint : Springer, , 2021
Descrizione fisica 1 online resource (244 pages)
Disciplina 620.118
Soggetto topico Nanoscience
Polymers
Materials - Analysis
Microtechnology
Microelectromechanical systems
Environmental engineering
Biotechnology
Bioremediation
Nanochemistry
Nanophysics
Characterization and Analytical Technique
Microsystems and MEMS
Environmental Engineering/Biotechnology
ISBN 981-16-7297-0
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Chapter 1. Introduction -- Chapter 2 Experimental design, fabrication and characterization techniques -- Chapter 3 Optimization of material formulation and processing parameters of bioepoxy/clay nanocomposites -- Chapter 4 Morphological structures of bioepoxy/clay nanocomposites with optimum formulation -- Chapter 5 Material properties of bioepoxy/clay nanocomposites with optimum formulation -- Chapter 6 Theoretical modeling of bioepoxy/clay nanocomposites -- Chapter 7 Nanocomposite applications -- Appendices.
Record Nr. UNINA-9910510586703321
Salam Haipan  
Singapore : , : Springer Nature Singapore : , : Imprint : Springer, , 2021
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Composite Materials : Manufacturing, Properties and Applications
Composite Materials : Manufacturing, Properties and Applications
Autore Low It-Meng
Pubbl/distr/stampa Elsevier
Descrizione fisica 1 online resource (690 pages)
Disciplina 620.118
Altri autori (Persone) DongYu
Soggetto topico Composite materials
ISBN 9780128205129
0128205121
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Intro -- Composite Materials: Manufacturing, Properties and Applications -- Copyright -- Contents -- Contributors -- Preface -- Section I: Manufacturing -- Chapter 1: Futuristic synthesis strategies for aluminum-based metal-matrix composites -- 1.1. Introduction -- 1.2. Classifications of composite materials -- 1.3. Description of the process and working principle -- 1.3.1. Microwave-assisted processes -- 1.3.1.1. Microwave hybrid sintering process -- 1.3.1.2. Microwave casting -- 1.3.1.3. Microwave hot pressing -- 1.3.2. Spark plasma sintering process -- 1.3.3. Friction stir processing -- 1.3.4. Disintegrated melt deposition -- 1.3.5. Ultrasonic-assisted casting -- 1.4. Mechanical properties and industrial scalability of Al-MMCs -- 1.5. Futuristic development and applications -- 1.6. Summary and future prospects -- References -- Chapter 2: Geopolymer composites modified with nanomaterials -- 2.1. Introduction -- 2.2. Nano-silica (NS) -- 2.2.1. Physical properties -- 2.2.2. Chemical properties -- 2.2.3. Effect of nano-silica on the properties of geopolymer composites -- 2.2.3.1. Workability -- 2.2.3.2. Geopolymerization -- 2.2.3.3. Setting time -- 2.2.3.4. Strength properties -- 2.2.3.5. Durability properties -- 2.2.3.6. Conclusions -- 2.3. Nano-clay -- 2.3.1. Physical properties -- 2.3.2. Chemical properties -- 2.3.3. Effect of nanoclay on the properties of geopolymer composites -- 2.3.3.1. Workability -- 2.3.3.2. Geopolymerization -- 2.3.3.3. Setting time -- 2.3.3.4. Strength properties -- 2.3.3.5. Durability properties -- 2.3.3.6. Conclusions -- 2.4. Nano-alumina -- 2.4.1. Physical properties -- 2.4.2. Chemical properties -- 2.4.3. Effect of nano-alumina on the properties of geopolymer composites -- 2.4.3.1. Workability -- 2.4.3.2. Geopolymerization -- 2.4.3.3. Setting time -- 2.4.3.4. Strength properties -- 2.4.3.5. Durability properties.
2.4.3.6. Conclusions -- 2.5. Carbon nanotubes -- 2.5.1. Properties of CNTs -- 2.5.2. Effect of carbon nanotubes on the properties of geopolymer composites -- 2.5.2.1. Workability and setting times -- 2.5.2.2. Geopolymerization -- 2.5.2.3. Strength properties -- 2.5.2.4. Durability properties -- 2.5.2.5. Conclusions -- 2.6. Nano-titanium dioxide (Nano-TiO2) -- 2.6.1. Properties of nano-TiO2 -- 2.6.2. Effect of nano-TiO2 on the properties of geopolymer composites -- 2.6.2.1. Workability -- 2.6.2.2. Geopolymerization -- 2.6.2.3. Setting time -- 2.6.2.4. Strength properties -- 2.6.2.5. Durability properties -- 2.6.2.6. Conclusions -- References -- Chapter 3: Advanced hybrid fiber-reinforced composites for high material performance -- 3.1. Introduction -- 3.2. Hybridization of carbon fiber and carbon nanotubes -- 3.2.1. Electrospray deposition method (ESD) -- 3.3. Performance of CF-CNT hybrid -- 3.3.1. Mechanical properties -- 3.4. Performance of CF-CNT hybrid fiber-reinforced polymer composites -- 3.4.1. Mechanical properties -- 3.4.2. Electrical properties -- 3.4.3. Thermal properties -- 3.5. Conclusion and future work -- References -- Chapter 4: 3D printing composite materials: A comprehensive review -- 4.1. Introduction -- 4.1.1. Basic concept of 3D printing -- 4.1.2. General stages in 3D printing -- 4.1.2.1. Creating 3-D models -- 4.1.2.2. File conversion of 3-D model -- 4.1.2.3. Optimization -- 4.1.2.4. 3-D printer setup -- 4.1.2.5. Build process -- 4.1.2.6. Removal and cleanup -- 4.1.2.7. Postprocessing -- 4.2. 3D printing techniques -- 4.2.1. Binder jetting (BJ) -- 4.2.2. Directed energy deposition (DED) -- 4.2.3. Material extrusion (ME)-Fused deposition modeling (FDM) -- 4.2.4. Material jetting (MJ) -- 4.2.5. Powder bed fusion (PBF) -- 4.2.6. Sheet lamination (SL) -- 4.2.7. Vat photopolymerization (VP) -- 4.3. 3D printing composite materials.
4.3.1. 3D printing of polymer matrix composites (PMCs) -- 4.3.1.1. 3D printing of PMCs with particle reinforcements -- 4.3.1.2. 3D printing of PMCs with fiber reinforcements -- 4.3.1.3. 3-D printing of PMCs with nanoparticle reinforcements -- 4.3.2. 3D printing of ceramic-matrix composites (CMCs) -- 4.3.2.1. 3D printing of CMCs with fiber reinforcements -- 4.3.2.2. 3D printing of CMCs with nanoparticle reinforcements -- 4.3.3. 3D printing of metal matrix composites (MMCs) -- 4.4. Applications -- 4.4.1. Biomedical applications -- 4.4.2. Aerospace applications -- 4.4.3. Automotive applications -- 4.4.4. Electronics applications -- 4.4.5. Food applications -- 4.4.6. Sport equipment -- 4.4.7. Marine applications -- 4.5. Summary and future perspectives -- References -- Chapter 5: Fiber composites of inorganic polymers (geopolymers) reinforced with natural fibers -- 5.1. Introduction -- 5.2. Aluminosilicate geopolymers -- 5.2.1. Formation mechanism and structure of the geopolymer matrix -- 5.2.2. Geopolymer synthesis parameters -- 5.3. Geopolymers reinforced with natural fibers -- 5.3.1. Cellulose-based fibers -- 5.3.1.1. Chemical structure and mechanical properties of cellulose-based fibers -- 5.3.1.2. Behavior in highly alkaline conditions -- 5.3.1.3. Flax fibers -- 5.3.1.4. Cotton fibers -- 5.3.1.5. Bamboo fibers -- 5.3.1.6. Other cellulose-based fibers -- 5.3.2. Protein-based fibers -- 5.3.2.1. Chemistry and structure of wool fibers -- 5.3.2.2. Mechanical properties of wool-reinforced geopolymers -- 5.3.2.3. Chemical interactions between wool fiber and geopolymer matrix -- 5.3.2.4. Applications of wool-reinforced geopolymers -- 5.4. Concluding remarks -- References -- Section II: Properties -- Chapter 6: Interphase and interfacial properties of composite materials -- 6.1. Introduction -- 6.2. Fundamental concepts of composites -- 6.2.1. Reinforcements.
6.2.2. Matrix -- 6.2.2.1. Polymer matrix -- 6.2.2.2. Metal matrix -- 6.2.2.3. Ceramic matrix -- 6.2.3. Interphase -- 6.2.3.1. Interphase mechanism -- 6.2.3.2. Failure modes of the interphase -- 6.3. Interfacial properties -- 6.3.1. Interfacial shear strength -- 6.3.1.1. Interfacial shear strength of polymer matrix composites -- 6.3.1.2. Interfacial shear strength of metal and ceramic matrix composites -- 6.3.2. Fracture toughness -- 6.3.3. Improvement methods for interfacial properties -- 6.3.3.1. Reinforcement treatment -- 6.3.3.2. Matrix modifications -- 6.4. Future perspectives -- 6.5. Conclusions -- References -- Chapter 7: Durability and life prediction of fiber-reinforced polymer composites -- 7.1. Introduction -- 7.2. Durability of FRP composites -- 7.2.1. Single environmental effects on FRP composites based on epoxy, polyester and vinylester -- 7.2.1.1. Elevated temperature -- 7.2.1.2. Low temperature and freeze-thaw cycling -- 7.2.1.3. Moisture -- 7.2.1.4. Acidity and alkalinity -- 7.2.1.5. UV radiation -- 7.2.2. Effects of environmental and sustained mechanical load -- 7.3. Life prediction of FRP composites -- 7.3.1. Motivations of characterization for FRP composite life -- 7.3.2. Life-prediction models based on accelerated tests -- 7.3.2.1. Time-temperature-superposition principle -- Single horizontal shift in time domain -- Vertical and horizontal shifts -- Applications of TTSP-empirical Arrhenius plots -- 7.3.3. Other life-prediction methods -- 7.3.3.1. Artificial intelligence techniques -- Theoretical methods based on physical-chemical evolutions -- 7.4. Summary -- References -- Chapter 8: Composites for structural strengthening, repair, rehabilitation, and retrofit -- 8.1. Introduction -- 8.2. Composite materials -- 8.2.1. Fiber-reinforced polymers (FRPs) -- 8.2.1.1. Definition, history, and potentials.
8.2.1.2. Materials and properties -- 8.2.1.3. Material modifications and surface preparation -- 8.2.1.4. Manufacturing and installation methods -- 8.2.1.5. Applications -- 8.2.2. Engineered cementitious composites (ECCs) -- 8.2.2.1. Definition, history, and potentials -- 8.2.2.2. Materials and properties -- 8.2.2.3. Manufacturing and installation methods -- 8.2.2.4. Applications -- 8.3. Further consideration aspects for using composite as strengthening materials -- 8.3.1. Durability -- 8.3.2. Fire resistance -- 8.3.3. Numerical modeling -- 8.4. Conclusions and outlook -- References -- Chapter 9: Vinyl-ester composites reinforced with natural fibers and nanofillers -- 9.1. Introduction -- 9.2. Experimental procedure -- 9.2.1. Materials -- 9.2.2. Preparation of samples -- 9.2.2.1. Cellulose fiber-reinforced polymer composites -- 9.2.2.2. Polymer nanocomposites -- 9.2.2.3. Polymer composites reinforced with cellulose fibers and nanoclay platelets or halloysite nanotubes -- 9.2.3. Characterization of physical and mechanical properties -- 9.2.3.1. Porosity -- 9.2.3.2. Flexural strength -- 9.2.3.3. Impact toughness -- 9.2.3.4. Fracture toughness -- 9.2.3.5. Thermal stability and flammability -- 9.3. Results and discussion -- 9.3.1. Porosity -- 9.3.2. Flexural strength -- 9.3.3. Impact toughness -- 9.3.4. Role of water absorption on durability -- 9.3.5. Fracture toughness -- 9.3.6. Thermal stability and flammability -- 9.4. Conclusions -- Acknowledgments -- References -- Chapter 10: Fracture mechanics of composites: Reinforcement of short carbon and glass fibers -- 10.1. Introduction -- 10.2. Experiment procedure -- 10.2.1. Materials and specimens -- 10.2.2. Equipment for impact testing -- 10.3. Results and discussion -- 10.3.1. Equation of energy release rate -- 10.4. Conclusions -- References.
Chapter 11: Mechanical properties of recycled polyethylene terephthalate (PET) fiber-reinforced fly ash geopolymer and f.
Altri titoli varianti Composite Materials
Record Nr. UNINA-9911007290703321
Low It-Meng  
Elsevier
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Fillers and reinforcements for advanced nanocomposites / / edited by Yu Dong, Rehan Umer and Alan Kin-Tak Lau ; contributors Abdul Khalil [and forty one others]
Fillers and reinforcements for advanced nanocomposites / / edited by Yu Dong, Rehan Umer and Alan Kin-Tak Lau ; contributors Abdul Khalil [and forty one others]
Pubbl/distr/stampa Amsterdam, [Netherlands] : , : Woodhead Publishing, , 2015
Descrizione fisica 1 online resource (587 p.)
Disciplina 620.118
Collana Woodhead Publishing Series in Composites Science and Engineering
Soggetto topico Nanocomposites (Materials)
Nanostructured materials
ISBN 0-08-100082-0
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Front Cover; Related titles; Fillers and Reinforcements for Advanced Nanocomposites; Copyright; Contents; List of contributors; Woodhead Publishing Series in Composites Science and Engineering; Preface; Part One - Nanocelluloses; 1 - Properties and characterization of electrically conductive nanocellulose-based composite films; 1.1 Introduction; 1.2 Experimental details of preparation and characterization; 1.3 Structures and properties of nanocellulose/PANI composites; 1.4 Conclusions and future trends; References
2 - Comparing the effects of microcrystalline cellulose and cellulose nanowhiskers extracted from oil palm empty fruit bunc ...2.1 Introduction; 2.2 Experimental details of preparation and characterization; 2.3 Results and discussion; 2.4 Conclusions; Acknowledgments; References; 3 - Advanced nanocomposites based on natural reinforcements; 3.1 Introduction; 3.2 Cellulose nanofiber extraction; 3.3 The percolation phenomenon of cellulose; 3.4 Chitin nanofibers; 3.5 Conclusions and future trends; References; Part Two - Nanotubes
4 - Electrospun poly(lactic acid) (PLA): poly(ε-caprolactone) (PCL)/halloysite nanotube (HNT) composite fibers: synthesis a ...4.1 Introduction; 4.2 Material fabrication and characterization; 4.3 Morphological observations; 4.4 Reaction mechanism of nanocomposite fibers; 4.5 Crystalline structures; 4.6 Thermal properties; 4.7 Intermolecular interactions; 4.8 Conclusions; References; 5 - Production of hybrid inorganic/carbon nanotube fillers via chemical vapor deposition for advanced polymer nanocomposites; 5.1 Introduction; 5.2 Carbon nanotubes origins; 5.3 The development of CNT hybrids
5.4 CNT/inorganic hybrid filler by CVD5.5 Advantages of using CNT/inorganic hybrid in polymer nanocomposites; 5.6 Synthesis and characterization of inorganic/CNT hybrid compounds; 5.7 Effect of hybrid and physically mixed MWCNT and alumina in phenolic/MWCNT-alumina composites; 5.8 Conclusions; 5.9 Future trends; Acknowledgments; References; Part Three - Nanoplatelets; 6 - Development of biobased polymer/clay nanocomposites: a critical review; 6.1 Introduction; 6.2 Nanoclay fillers; 6.3 Polymer/clay nanocomposites from biodegradable mixed sources; 6.4 Conclusions and future trends
AcknowledgmentsReferences; 7 - Synthesis of graphene-based polymeric nanocomposites; 7.1 Introduction; 7.2 Functionalization of graphene; 7.3 Methods of fabrication of graphene-based polymer composites; 7.4 Properties of polymer/graphite/graphene nanocomposites; 7.5 Conclusions and future trends; Acknowledgments; References; 8 - Manufacturing and characterization of multifunctional polymer-reduced graphene oxide nanocomposites; 8.1 Introduction; 8.2 Materials and manufacturing; 8.3 Characterization; Acknowledgment; References; 9 - The processing of hierarchical nanocomposites
9.1 Introduction
Record Nr. UNINA-9910797499103321
Amsterdam, [Netherlands] : , : Woodhead Publishing, , 2015
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Fillers and reinforcements for advanced nanocomposites / / edited by Yu Dong, Rehan Umer and Alan Kin-Tak Lau ; contributors Abdul Khalil [and forty one others]
Fillers and reinforcements for advanced nanocomposites / / edited by Yu Dong, Rehan Umer and Alan Kin-Tak Lau ; contributors Abdul Khalil [and forty one others]
Pubbl/distr/stampa Amsterdam, [Netherlands] : , : Woodhead Publishing, , 2015
Descrizione fisica 1 online resource (587 p.)
Disciplina 620.118
Collana Woodhead Publishing Series in Composites Science and Engineering
Soggetto topico Nanocomposites (Materials)
Nanostructured materials
ISBN 0-08-100082-0
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Front Cover; Related titles; Fillers and Reinforcements for Advanced Nanocomposites; Copyright; Contents; List of contributors; Woodhead Publishing Series in Composites Science and Engineering; Preface; Part One - Nanocelluloses; 1 - Properties and characterization of electrically conductive nanocellulose-based composite films; 1.1 Introduction; 1.2 Experimental details of preparation and characterization; 1.3 Structures and properties of nanocellulose/PANI composites; 1.4 Conclusions and future trends; References
2 - Comparing the effects of microcrystalline cellulose and cellulose nanowhiskers extracted from oil palm empty fruit bunc ...2.1 Introduction; 2.2 Experimental details of preparation and characterization; 2.3 Results and discussion; 2.4 Conclusions; Acknowledgments; References; 3 - Advanced nanocomposites based on natural reinforcements; 3.1 Introduction; 3.2 Cellulose nanofiber extraction; 3.3 The percolation phenomenon of cellulose; 3.4 Chitin nanofibers; 3.5 Conclusions and future trends; References; Part Two - Nanotubes
4 - Electrospun poly(lactic acid) (PLA): poly(ε-caprolactone) (PCL)/halloysite nanotube (HNT) composite fibers: synthesis a ...4.1 Introduction; 4.2 Material fabrication and characterization; 4.3 Morphological observations; 4.4 Reaction mechanism of nanocomposite fibers; 4.5 Crystalline structures; 4.6 Thermal properties; 4.7 Intermolecular interactions; 4.8 Conclusions; References; 5 - Production of hybrid inorganic/carbon nanotube fillers via chemical vapor deposition for advanced polymer nanocomposites; 5.1 Introduction; 5.2 Carbon nanotubes origins; 5.3 The development of CNT hybrids
5.4 CNT/inorganic hybrid filler by CVD5.5 Advantages of using CNT/inorganic hybrid in polymer nanocomposites; 5.6 Synthesis and characterization of inorganic/CNT hybrid compounds; 5.7 Effect of hybrid and physically mixed MWCNT and alumina in phenolic/MWCNT-alumina composites; 5.8 Conclusions; 5.9 Future trends; Acknowledgments; References; Part Three - Nanoplatelets; 6 - Development of biobased polymer/clay nanocomposites: a critical review; 6.1 Introduction; 6.2 Nanoclay fillers; 6.3 Polymer/clay nanocomposites from biodegradable mixed sources; 6.4 Conclusions and future trends
AcknowledgmentsReferences; 7 - Synthesis of graphene-based polymeric nanocomposites; 7.1 Introduction; 7.2 Functionalization of graphene; 7.3 Methods of fabrication of graphene-based polymer composites; 7.4 Properties of polymer/graphite/graphene nanocomposites; 7.5 Conclusions and future trends; Acknowledgments; References; 8 - Manufacturing and characterization of multifunctional polymer-reduced graphene oxide nanocomposites; 8.1 Introduction; 8.2 Materials and manufacturing; 8.3 Characterization; Acknowledgment; References; 9 - The processing of hierarchical nanocomposites
9.1 Introduction
Record Nr. UNINA-9910816276403321
Amsterdam, [Netherlands] : , : Woodhead Publishing, , 2015
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Manufacturing, Characterisation and Prop erties of Advanced Nanocomposites / / edited by Yu Dong (and three others)
Manufacturing, Characterisation and Prop erties of Advanced Nanocomposites / / edited by Yu Dong (and three others)
Pubbl/distr/stampa Basel : , : MDPI, , 2018
Descrizione fisica 1 online resource (ix, 152 pages) : iilustrations
Disciplina 620.118
Soggetto topico Nanocomposites (Materials)
ISBN 3-03897-189-8
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto About the Special Issue Editors . vii -- Preface to "Manufacturing, Characterisation and Properties of Advanced Nanocomposites" . ix -- Yu Dong, Alokesh Pramanik, Dongyan Liu and Rehan Umer Manufacturing, Characterisation and Properties of Advanced Nanocomposites Reprinted from: J. Compos. Sci. 2018, 2, 46, doi: 10.3390/jcs2030046 . 1 -- Kean Wang, Pooria Pasbakhsh, Rangika Thilan De Silva and Kheng Lim Goh A Comparative Analysis of the Reinforcing Efficiency of Silsesquioxane Nanoparticles versus Apatite Nanoparticles in Chitosan Biocomposite Fibres Reprinted from: J. Compos. Sci. 2017, 1, 9, doi: 10.3390/jcs1010009 4 -- Arifur Rahman and Xiang-Fa Wu Computational Study of the Effects of Processing Parameters on the Nonlinear Elastoplastic Behavior of Polymer Nanoclay Composites Reprinted from: J. Compos. Sci. 2017, 1, 16, doi: 10.3390/jcs1020016 . 21 -- Wenqiang Liu, Yu Dong, Dongyan Liu, Yuxia Bai and Xiuzhen Lu Polylactic Acid (PLA)/Cellulose Nanowhiskers (CNWs) Composite Nanofibers: Microstructural and Properties Analysis Reprinted from: J. Compos. Sci. 2018, 2, 4, doi: 10.3390/jcs2010004 38 -- Alokesh Pramanik, Animesh Kumar Basak, Yu Dong, Subramaniam Shankar and Guy Littlefair Milling of Nanoparticles Reinforced Al-Based Metal Matrix Composites Reprinted from: J. Compos. Sci. 2018, 2, 13, doi: 10.3390/jcs2010013 . 52 -- Rehan Umer Manufacturing and Mechanical Properties of Graphene Coated Glass Fabric and Epoxy Composites Reprinted from: J. Compos. Sci. 2018, 2, 17, doi: 10.3390/jcs2020017 . 64 -- Ming-He Chen, Cing-Yu Ke and Chin-Lung Chiang Preparation and Performance of Ecofriendly Epoxy/Multilayer Graphene Oxide Composites with Flame-Retardant Functional Groups Reprinted from: J. Compos. Sci. 2018, 2, 18, doi: 10.3390/jcs2020018 . 79 -- Sanjeev Rao, Jahnavee Upadhyay, Kyriaki Polychronopoulou, Rehan Umer and Raj Das Reduced Graphene Oxide: Effect of Reduction on Electrical Conductivity Reprinted from: J. Compos. Sci. 2018, 2, 25, doi: 10.3390/jcs2020025 . 95 -- Animesh K. Basak, Alokesh Pramanik, Hamidreza Riazi, Mahyar Silakhori and Angus K. O. Netting Development of Pb-Free Nanocomposite Solder Alloys Reprinted from: J. Compos. Sci. 2018, 2, 28, doi: 10.3390/jcs2020028 . 107 -- Antonio Norio Nakagaito, Sohtaro Kanzawa and Hitoshi Takagi Polylactic Acid Reinforced with Mixed Cellulose and Chitin Nanofibers-Effect of Mixture Ratio on the Mechanical Properties of Composites Reprinted from: J. Compos. Sci. 2018, 2, 36, doi: 10.3390/jcs2020036 . 116 -- Cristobal Garcia, Irina Trendafilova and Andrea Zucchelli The Effect of Polycaprolactone Nanofibers on the Dynamic and Impact Behavior of Glass Fibre Reinforced Polymer Composites Reprinted from: J. Compos. Sci. 2018, 2, 43, doi: 10.3390/jcs2030043 . 128.
Record Nr. UNINA-9910765893103321
Basel : , : MDPI, , 2018
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Manufacturing, characterisation and properties of advanced nanocomposites / / edited by Yu Dong [and three others]
Manufacturing, characterisation and properties of advanced nanocomposites / / edited by Yu Dong [and three others]
Pubbl/distr/stampa Basel, Switzerland : , : MDPI - Multidisciplinary Digital Publishing Institute, , 2018
Descrizione fisica 1 online resource (152 pages)
Disciplina 620.118
Soggetto topico Nanocomposites (Materials)
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto About the Special Issue Editors -- Preface to "Manufacturing, Characterisation and Properties of Advanced Nanocomposites" -- Yu Dong, Alokesh Pramanik, Dongyan Liu and Rehan Umer Manufacturing, Characterisation and Properties of Advanced Nanocomposites Reprinted from: J. Compos. Sci. 2018, 2, 46, doi: 10.3390/jcs2030046 -- Kean Wang, Pooria Pasbakhsh, Rangika Thilan De Silva and Kheng Lim Goh A Comparative Analysis of the Reinforcing Efficiency of Silsesquioxane Nanoparticles versus Apatite Nanoparticles in Chitosan Biocomposite Fibres Reprinted from: J. Compos. Sci. 2017, 1, 9, doi: 10.3390/jcs1010009 -- Arifur Rahman and Xiang-Fa Wu Computational Study of the Effects of Processing Parameters on the Nonlinear Elastoplastic Behavior of Polymer Nanoclay Composites Reprinted from: J. Compos. Sci. 2017, 1, 16, doi: 10.3390/jcs1020016 -- Wenqiang Liu, Yu Dong, Dongyan Liu, Yuxia Bai and Xiuzhen Lu Polylactic Acid (PLA)/Cellulose Nanowhiskers (CNWs) Composite Nanofibers: Microstructural and Properties Analysis Reprinted from: J. Compos. Sci. 2018, 2, 4, doi: 10.3390/jcs2010004 -- Alokesh Pramanik, Animesh Kumar Basak, Yu Dong, Subramaniam Shankar and Guy Littlefair Milling of Nanoparticles Reinforced Al-Based Metal Matrix Composites Reprinted from: J. Compos. Sci. 2018, 2, 13, doi: 10.3390/jcs2010013 -- Rehan Umer Manufacturing and Mechanical Properties of Graphene Coated Glass Fabric and Epoxy Composites Reprinted from: J. Compos. Sci. 2018, 2, 17, doi: 10.3390/jcs2020017 -- Ming-He Chen, Cing-Yu Ke and Chin-Lung Chiang Preparation and Performance of Ecofriendly Epoxy/Multilayer Graphene Oxide Composites with Flame-Retardant Functional Groups Reprinted from: J. Compos. Sci. 2018, 2, 18, doi: 10.3390/jcs2020018 -- Sanjeev Rao, Jahnavee Upadhyay, Kyriaki Polychronopoulou, Rehan Umer and Raj Das Reduced Graphene Oxide: Effect of Reduction on Electrical Conductivity Reprinted from: J. Compos. Sci. 2018, 2, 25, doi: 10.3390/jcs2020025 -- Animesh K. Basak, Alokesh Pramanik, Hamidreza Riazi, Mahyar Silakhori and Angus K. O. Netting Development of Pb-Free Nanocomposite Solder Alloys Reprinted from: J. Compos. Sci. 2018, 2, 28, doi: 10.3390/jcs2020028 -- Antonio Norio Nakagaito, Sohtaro Kanzawa and Hitoshi Takagi Polylactic Acid Reinforced with Mixed Cellulose and Chitin Nanofibers-Effect of Mixture Ratio on the Mechanical Properties of Composites Reprinted from: J. Compos. Sci. 2018, 2, 36, doi: 10.3390/jcs2020036 -- Cristobal Garcia, Irina Trendafilova and Andrea Zucchelli The Effect of Polycaprolactone Nanofibers on the Dynamic and Impact Behavior of Glass Fibre Reinforced Polymer Composites Reprinted from: J. Compos. Sci. 2018, 2, 43, doi: 10.3390/jcs2030043.
Record Nr. UNINA-9910674020903321
Basel, Switzerland : , : MDPI - Multidisciplinary Digital Publishing Institute, , 2018
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Multiscaled PVA bionanocomposite films : characterisation and nanoscale modelling / / Mohanad Mousa, Yu Dong
Multiscaled PVA bionanocomposite films : characterisation and nanoscale modelling / / Mohanad Mousa, Yu Dong
Autore Mousa Mohanad
Edizione [1st ed. 2021.]
Pubbl/distr/stampa Singapore : , : Springer, , [2021]
Descrizione fisica 1 online resource (XI, 179 p. 84 illus., 70 illus. in color.)
Disciplina 620.118
Soggetto topico Nanocomposites (Materials)
Polyvinyl alcohol
Thin films
ISBN 981-15-8771-X
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Chapter 1. Introduction -- Chapter 2 Materials, methodology and characterisation techniques -- Chapter 3 PVA/BC bionancomposite films with particle size effect -- Chapter 4 PVA bionanocomposite films with different particle shapes and structures -- Chapter 5 3D interphase of PVA bionanocomposite films -- Chapter 6 Micromechanical modelling of PVA bionanocomposite films.
Record Nr. UNISA-996466745503316
Mousa Mohanad  
Singapore : , : Springer, , [2021]
Materiale a stampa
Lo trovi qui: Univ. di Salerno
Opac: Controlla la disponibilità qui
Multiscaled PVA Bionanocomposite Films : Characterisation and Nanoscale Modelling / / by Mohanad Mousa, Yu Dong
Multiscaled PVA Bionanocomposite Films : Characterisation and Nanoscale Modelling / / by Mohanad Mousa, Yu Dong
Autore Mousa Mohanad
Edizione [1st ed. 2021.]
Pubbl/distr/stampa Singapore : , : Springer Nature Singapore : , : Imprint : Springer, , 2021
Descrizione fisica 1 online resource (XI, 179 p. 84 illus., 70 illus. in color.)
Disciplina 620.118
Soggetto topico Surfaces (Physics)
Materials - Analysis
Microtechnology
Microelectromechanical systems
Biomaterials
Surfaces (Technology)
Thin films
Ceramic materials
Surface and Interface and Thin Film
Characterization and Analytical Technique
Microsystems and MEMS
Surfaces, Interfaces and Thin Film
Ceramics
ISBN 981-15-8771-X
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Chapter 1. Introduction -- Chapter 2 Materials, methodology and characterisation techniques -- Chapter 3 PVA/BC bionancomposite films with particle size effect -- Chapter 4 PVA bionanocomposite films with different particle shapes and structures -- Chapter 5 3D interphase of PVA bionanocomposite films -- Chapter 6 Micromechanical modelling of PVA bionanocomposite films.
Record Nr. UNINA-9910483068003321
Mousa Mohanad  
Singapore : , : Springer Nature Singapore : , : Imprint : Springer, , 2021
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui