Biodegradable Matrices and Composites
| Biodegradable Matrices and Composites |
| Autore | Pegoretti Alessandro |
| Pubbl/distr/stampa | Frontiers Media SA, 2020 |
| Descrizione fisica | 1 online resource (310 p.) |
| Soggetto topico |
Civil engineering, surveying & building
Mechanical engineering & materials |
| Soggetto non controllato |
biodegradability
biodegradable composites biodegradable polymers environmental sustainability material characterization recyclability |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Record Nr. | UNINA-9910557742603321 |
Pegoretti Alessandro
|
||
| Frontiers Media SA, 2020 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Bioepoxy/clay nanocomposites : fabrication optimisation, properties and modelling / / Haipan Salam, Yu Dong
| Bioepoxy/clay nanocomposites : fabrication optimisation, properties and modelling / / Haipan Salam, Yu Dong |
| Autore | Salam Haipan |
| Pubbl/distr/stampa | Singapore : , : Springer, , [2021] |
| Descrizione fisica | 1 online resource (244 pages) |
| Disciplina | 620.118 |
| Soggetto topico | Nanocomposites (Materials) |
| ISBN | 981-16-7297-0 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Record Nr. | UNISA-996466851003316 |
Salam Haipan
|
||
| Singapore : , : Springer, , [2021] | ||
| Lo trovi qui: Univ. di Salerno | ||
| ||
Bioepoxy/Clay Nanocomposites : Fabrication Optimisation, Properties and Modelling / / by Haipan Salam, Yu Dong
| Bioepoxy/Clay Nanocomposites : Fabrication Optimisation, Properties and Modelling / / by Haipan Salam, Yu Dong |
| Autore | Salam Haipan |
| Edizione | [1st ed. 2021.] |
| Pubbl/distr/stampa | Singapore : , : Springer Nature Singapore : , : Imprint : Springer, , 2021 |
| Descrizione fisica | 1 online resource (244 pages) |
| Disciplina | 620.118 |
| Soggetto topico |
Nanoscience
Polymers Materials - Analysis Microtechnology Microelectromechanical systems Environmental engineering Biotechnology Bioremediation Nanochemistry Nanophysics Characterization and Analytical Technique Microsystems and MEMS Environmental Engineering/Biotechnology |
| ISBN | 981-16-7297-0 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto | Chapter 1. Introduction -- Chapter 2 Experimental design, fabrication and characterization techniques -- Chapter 3 Optimization of material formulation and processing parameters of bioepoxy/clay nanocomposites -- Chapter 4 Morphological structures of bioepoxy/clay nanocomposites with optimum formulation -- Chapter 5 Material properties of bioepoxy/clay nanocomposites with optimum formulation -- Chapter 6 Theoretical modeling of bioepoxy/clay nanocomposites -- Chapter 7 Nanocomposite applications -- Appendices. |
| Record Nr. | UNINA-9910510586703321 |
Salam Haipan
|
||
| Singapore : , : Springer Nature Singapore : , : Imprint : Springer, , 2021 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Composite Materials : Manufacturing, Properties and Applications
| Composite Materials : Manufacturing, Properties and Applications |
| Autore | Low It-Meng |
| Pubbl/distr/stampa | Elsevier |
| Descrizione fisica | 1 online resource (690 pages) |
| Disciplina | 620.118 |
| Altri autori (Persone) | DongYu |
| Soggetto topico | Composite materials |
| ISBN |
9780128205129
0128205121 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto |
Intro -- Composite Materials: Manufacturing, Properties and Applications -- Copyright -- Contents -- Contributors -- Preface -- Section I: Manufacturing -- Chapter 1: Futuristic synthesis strategies for aluminum-based metal-matrix composites -- 1.1. Introduction -- 1.2. Classifications of composite materials -- 1.3. Description of the process and working principle -- 1.3.1. Microwave-assisted processes -- 1.3.1.1. Microwave hybrid sintering process -- 1.3.1.2. Microwave casting -- 1.3.1.3. Microwave hot pressing -- 1.3.2. Spark plasma sintering process -- 1.3.3. Friction stir processing -- 1.3.4. Disintegrated melt deposition -- 1.3.5. Ultrasonic-assisted casting -- 1.4. Mechanical properties and industrial scalability of Al-MMCs -- 1.5. Futuristic development and applications -- 1.6. Summary and future prospects -- References -- Chapter 2: Geopolymer composites modified with nanomaterials -- 2.1. Introduction -- 2.2. Nano-silica (NS) -- 2.2.1. Physical properties -- 2.2.2. Chemical properties -- 2.2.3. Effect of nano-silica on the properties of geopolymer composites -- 2.2.3.1. Workability -- 2.2.3.2. Geopolymerization -- 2.2.3.3. Setting time -- 2.2.3.4. Strength properties -- 2.2.3.5. Durability properties -- 2.2.3.6. Conclusions -- 2.3. Nano-clay -- 2.3.1. Physical properties -- 2.3.2. Chemical properties -- 2.3.3. Effect of nanoclay on the properties of geopolymer composites -- 2.3.3.1. Workability -- 2.3.3.2. Geopolymerization -- 2.3.3.3. Setting time -- 2.3.3.4. Strength properties -- 2.3.3.5. Durability properties -- 2.3.3.6. Conclusions -- 2.4. Nano-alumina -- 2.4.1. Physical properties -- 2.4.2. Chemical properties -- 2.4.3. Effect of nano-alumina on the properties of geopolymer composites -- 2.4.3.1. Workability -- 2.4.3.2. Geopolymerization -- 2.4.3.3. Setting time -- 2.4.3.4. Strength properties -- 2.4.3.5. Durability properties.
2.4.3.6. Conclusions -- 2.5. Carbon nanotubes -- 2.5.1. Properties of CNTs -- 2.5.2. Effect of carbon nanotubes on the properties of geopolymer composites -- 2.5.2.1. Workability and setting times -- 2.5.2.2. Geopolymerization -- 2.5.2.3. Strength properties -- 2.5.2.4. Durability properties -- 2.5.2.5. Conclusions -- 2.6. Nano-titanium dioxide (Nano-TiO2) -- 2.6.1. Properties of nano-TiO2 -- 2.6.2. Effect of nano-TiO2 on the properties of geopolymer composites -- 2.6.2.1. Workability -- 2.6.2.2. Geopolymerization -- 2.6.2.3. Setting time -- 2.6.2.4. Strength properties -- 2.6.2.5. Durability properties -- 2.6.2.6. Conclusions -- References -- Chapter 3: Advanced hybrid fiber-reinforced composites for high material performance -- 3.1. Introduction -- 3.2. Hybridization of carbon fiber and carbon nanotubes -- 3.2.1. Electrospray deposition method (ESD) -- 3.3. Performance of CF-CNT hybrid -- 3.3.1. Mechanical properties -- 3.4. Performance of CF-CNT hybrid fiber-reinforced polymer composites -- 3.4.1. Mechanical properties -- 3.4.2. Electrical properties -- 3.4.3. Thermal properties -- 3.5. Conclusion and future work -- References -- Chapter 4: 3D printing composite materials: A comprehensive review -- 4.1. Introduction -- 4.1.1. Basic concept of 3D printing -- 4.1.2. General stages in 3D printing -- 4.1.2.1. Creating 3-D models -- 4.1.2.2. File conversion of 3-D model -- 4.1.2.3. Optimization -- 4.1.2.4. 3-D printer setup -- 4.1.2.5. Build process -- 4.1.2.6. Removal and cleanup -- 4.1.2.7. Postprocessing -- 4.2. 3D printing techniques -- 4.2.1. Binder jetting (BJ) -- 4.2.2. Directed energy deposition (DED) -- 4.2.3. Material extrusion (ME)-Fused deposition modeling (FDM) -- 4.2.4. Material jetting (MJ) -- 4.2.5. Powder bed fusion (PBF) -- 4.2.6. Sheet lamination (SL) -- 4.2.7. Vat photopolymerization (VP) -- 4.3. 3D printing composite materials. 4.3.1. 3D printing of polymer matrix composites (PMCs) -- 4.3.1.1. 3D printing of PMCs with particle reinforcements -- 4.3.1.2. 3D printing of PMCs with fiber reinforcements -- 4.3.1.3. 3-D printing of PMCs with nanoparticle reinforcements -- 4.3.2. 3D printing of ceramic-matrix composites (CMCs) -- 4.3.2.1. 3D printing of CMCs with fiber reinforcements -- 4.3.2.2. 3D printing of CMCs with nanoparticle reinforcements -- 4.3.3. 3D printing of metal matrix composites (MMCs) -- 4.4. Applications -- 4.4.1. Biomedical applications -- 4.4.2. Aerospace applications -- 4.4.3. Automotive applications -- 4.4.4. Electronics applications -- 4.4.5. Food applications -- 4.4.6. Sport equipment -- 4.4.7. Marine applications -- 4.5. Summary and future perspectives -- References -- Chapter 5: Fiber composites of inorganic polymers (geopolymers) reinforced with natural fibers -- 5.1. Introduction -- 5.2. Aluminosilicate geopolymers -- 5.2.1. Formation mechanism and structure of the geopolymer matrix -- 5.2.2. Geopolymer synthesis parameters -- 5.3. Geopolymers reinforced with natural fibers -- 5.3.1. Cellulose-based fibers -- 5.3.1.1. Chemical structure and mechanical properties of cellulose-based fibers -- 5.3.1.2. Behavior in highly alkaline conditions -- 5.3.1.3. Flax fibers -- 5.3.1.4. Cotton fibers -- 5.3.1.5. Bamboo fibers -- 5.3.1.6. Other cellulose-based fibers -- 5.3.2. Protein-based fibers -- 5.3.2.1. Chemistry and structure of wool fibers -- 5.3.2.2. Mechanical properties of wool-reinforced geopolymers -- 5.3.2.3. Chemical interactions between wool fiber and geopolymer matrix -- 5.3.2.4. Applications of wool-reinforced geopolymers -- 5.4. Concluding remarks -- References -- Section II: Properties -- Chapter 6: Interphase and interfacial properties of composite materials -- 6.1. Introduction -- 6.2. Fundamental concepts of composites -- 6.2.1. Reinforcements. 6.2.2. Matrix -- 6.2.2.1. Polymer matrix -- 6.2.2.2. Metal matrix -- 6.2.2.3. Ceramic matrix -- 6.2.3. Interphase -- 6.2.3.1. Interphase mechanism -- 6.2.3.2. Failure modes of the interphase -- 6.3. Interfacial properties -- 6.3.1. Interfacial shear strength -- 6.3.1.1. Interfacial shear strength of polymer matrix composites -- 6.3.1.2. Interfacial shear strength of metal and ceramic matrix composites -- 6.3.2. Fracture toughness -- 6.3.3. Improvement methods for interfacial properties -- 6.3.3.1. Reinforcement treatment -- 6.3.3.2. Matrix modifications -- 6.4. Future perspectives -- 6.5. Conclusions -- References -- Chapter 7: Durability and life prediction of fiber-reinforced polymer composites -- 7.1. Introduction -- 7.2. Durability of FRP composites -- 7.2.1. Single environmental effects on FRP composites based on epoxy, polyester and vinylester -- 7.2.1.1. Elevated temperature -- 7.2.1.2. Low temperature and freeze-thaw cycling -- 7.2.1.3. Moisture -- 7.2.1.4. Acidity and alkalinity -- 7.2.1.5. UV radiation -- 7.2.2. Effects of environmental and sustained mechanical load -- 7.3. Life prediction of FRP composites -- 7.3.1. Motivations of characterization for FRP composite life -- 7.3.2. Life-prediction models based on accelerated tests -- 7.3.2.1. Time-temperature-superposition principle -- Single horizontal shift in time domain -- Vertical and horizontal shifts -- Applications of TTSP-empirical Arrhenius plots -- 7.3.3. Other life-prediction methods -- 7.3.3.1. Artificial intelligence techniques -- Theoretical methods based on physical-chemical evolutions -- 7.4. Summary -- References -- Chapter 8: Composites for structural strengthening, repair, rehabilitation, and retrofit -- 8.1. Introduction -- 8.2. Composite materials -- 8.2.1. Fiber-reinforced polymers (FRPs) -- 8.2.1.1. Definition, history, and potentials. 8.2.1.2. Materials and properties -- 8.2.1.3. Material modifications and surface preparation -- 8.2.1.4. Manufacturing and installation methods -- 8.2.1.5. Applications -- 8.2.2. Engineered cementitious composites (ECCs) -- 8.2.2.1. Definition, history, and potentials -- 8.2.2.2. Materials and properties -- 8.2.2.3. Manufacturing and installation methods -- 8.2.2.4. Applications -- 8.3. Further consideration aspects for using composite as strengthening materials -- 8.3.1. Durability -- 8.3.2. Fire resistance -- 8.3.3. Numerical modeling -- 8.4. Conclusions and outlook -- References -- Chapter 9: Vinyl-ester composites reinforced with natural fibers and nanofillers -- 9.1. Introduction -- 9.2. Experimental procedure -- 9.2.1. Materials -- 9.2.2. Preparation of samples -- 9.2.2.1. Cellulose fiber-reinforced polymer composites -- 9.2.2.2. Polymer nanocomposites -- 9.2.2.3. Polymer composites reinforced with cellulose fibers and nanoclay platelets or halloysite nanotubes -- 9.2.3. Characterization of physical and mechanical properties -- 9.2.3.1. Porosity -- 9.2.3.2. Flexural strength -- 9.2.3.3. Impact toughness -- 9.2.3.4. Fracture toughness -- 9.2.3.5. Thermal stability and flammability -- 9.3. Results and discussion -- 9.3.1. Porosity -- 9.3.2. Flexural strength -- 9.3.3. Impact toughness -- 9.3.4. Role of water absorption on durability -- 9.3.5. Fracture toughness -- 9.3.6. Thermal stability and flammability -- 9.4. Conclusions -- Acknowledgments -- References -- Chapter 10: Fracture mechanics of composites: Reinforcement of short carbon and glass fibers -- 10.1. Introduction -- 10.2. Experiment procedure -- 10.2.1. Materials and specimens -- 10.2.2. Equipment for impact testing -- 10.3. Results and discussion -- 10.3.1. Equation of energy release rate -- 10.4. Conclusions -- References. Chapter 11: Mechanical properties of recycled polyethylene terephthalate (PET) fiber-reinforced fly ash geopolymer and f. |
| Altri titoli varianti | Composite Materials |
| Record Nr. | UNINA-9911007290703321 |
Low It-Meng
|
||
| Elsevier | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Fillers and reinforcements for advanced nanocomposites / / edited by Yu Dong, Rehan Umer and Alan Kin-Tak Lau ; contributors Abdul Khalil [and forty one others]
| Fillers and reinforcements for advanced nanocomposites / / edited by Yu Dong, Rehan Umer and Alan Kin-Tak Lau ; contributors Abdul Khalil [and forty one others] |
| Pubbl/distr/stampa | Amsterdam, [Netherlands] : , : Woodhead Publishing, , 2015 |
| Descrizione fisica | 1 online resource (587 p.) |
| Disciplina | 620.118 |
| Collana | Woodhead Publishing Series in Composites Science and Engineering |
| Soggetto topico |
Nanocomposites (Materials)
Nanostructured materials |
| ISBN | 0-08-100082-0 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto |
Front Cover; Related titles; Fillers and Reinforcements for Advanced Nanocomposites; Copyright; Contents; List of contributors; Woodhead Publishing Series in Composites Science and Engineering; Preface; Part One - Nanocelluloses; 1 - Properties and characterization of electrically conductive nanocellulose-based composite films; 1.1 Introduction; 1.2 Experimental details of preparation and characterization; 1.3 Structures and properties of nanocellulose/PANI composites; 1.4 Conclusions and future trends; References
2 - Comparing the effects of microcrystalline cellulose and cellulose nanowhiskers extracted from oil palm empty fruit bunc ...2.1 Introduction; 2.2 Experimental details of preparation and characterization; 2.3 Results and discussion; 2.4 Conclusions; Acknowledgments; References; 3 - Advanced nanocomposites based on natural reinforcements; 3.1 Introduction; 3.2 Cellulose nanofiber extraction; 3.3 The percolation phenomenon of cellulose; 3.4 Chitin nanofibers; 3.5 Conclusions and future trends; References; Part Two - Nanotubes 4 - Electrospun poly(lactic acid) (PLA): poly(ε-caprolactone) (PCL)/halloysite nanotube (HNT) composite fibers: synthesis a ...4.1 Introduction; 4.2 Material fabrication and characterization; 4.3 Morphological observations; 4.4 Reaction mechanism of nanocomposite fibers; 4.5 Crystalline structures; 4.6 Thermal properties; 4.7 Intermolecular interactions; 4.8 Conclusions; References; 5 - Production of hybrid inorganic/carbon nanotube fillers via chemical vapor deposition for advanced polymer nanocomposites; 5.1 Introduction; 5.2 Carbon nanotubes origins; 5.3 The development of CNT hybrids 5.4 CNT/inorganic hybrid filler by CVD5.5 Advantages of using CNT/inorganic hybrid in polymer nanocomposites; 5.6 Synthesis and characterization of inorganic/CNT hybrid compounds; 5.7 Effect of hybrid and physically mixed MWCNT and alumina in phenolic/MWCNT-alumina composites; 5.8 Conclusions; 5.9 Future trends; Acknowledgments; References; Part Three - Nanoplatelets; 6 - Development of biobased polymer/clay nanocomposites: a critical review; 6.1 Introduction; 6.2 Nanoclay fillers; 6.3 Polymer/clay nanocomposites from biodegradable mixed sources; 6.4 Conclusions and future trends AcknowledgmentsReferences; 7 - Synthesis of graphene-based polymeric nanocomposites; 7.1 Introduction; 7.2 Functionalization of graphene; 7.3 Methods of fabrication of graphene-based polymer composites; 7.4 Properties of polymer/graphite/graphene nanocomposites; 7.5 Conclusions and future trends; Acknowledgments; References; 8 - Manufacturing and characterization of multifunctional polymer-reduced graphene oxide nanocomposites; 8.1 Introduction; 8.2 Materials and manufacturing; 8.3 Characterization; Acknowledgment; References; 9 - The processing of hierarchical nanocomposites 9.1 Introduction |
| Record Nr. | UNINA-9910797499103321 |
| Amsterdam, [Netherlands] : , : Woodhead Publishing, , 2015 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Fillers and reinforcements for advanced nanocomposites / / edited by Yu Dong, Rehan Umer and Alan Kin-Tak Lau ; contributors Abdul Khalil [and forty one others]
| Fillers and reinforcements for advanced nanocomposites / / edited by Yu Dong, Rehan Umer and Alan Kin-Tak Lau ; contributors Abdul Khalil [and forty one others] |
| Pubbl/distr/stampa | Amsterdam, [Netherlands] : , : Woodhead Publishing, , 2015 |
| Descrizione fisica | 1 online resource (587 p.) |
| Disciplina | 620.118 |
| Collana | Woodhead Publishing Series in Composites Science and Engineering |
| Soggetto topico |
Nanocomposites (Materials)
Nanostructured materials |
| ISBN | 0-08-100082-0 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto |
Front Cover; Related titles; Fillers and Reinforcements for Advanced Nanocomposites; Copyright; Contents; List of contributors; Woodhead Publishing Series in Composites Science and Engineering; Preface; Part One - Nanocelluloses; 1 - Properties and characterization of electrically conductive nanocellulose-based composite films; 1.1 Introduction; 1.2 Experimental details of preparation and characterization; 1.3 Structures and properties of nanocellulose/PANI composites; 1.4 Conclusions and future trends; References
2 - Comparing the effects of microcrystalline cellulose and cellulose nanowhiskers extracted from oil palm empty fruit bunc ...2.1 Introduction; 2.2 Experimental details of preparation and characterization; 2.3 Results and discussion; 2.4 Conclusions; Acknowledgments; References; 3 - Advanced nanocomposites based on natural reinforcements; 3.1 Introduction; 3.2 Cellulose nanofiber extraction; 3.3 The percolation phenomenon of cellulose; 3.4 Chitin nanofibers; 3.5 Conclusions and future trends; References; Part Two - Nanotubes 4 - Electrospun poly(lactic acid) (PLA): poly(ε-caprolactone) (PCL)/halloysite nanotube (HNT) composite fibers: synthesis a ...4.1 Introduction; 4.2 Material fabrication and characterization; 4.3 Morphological observations; 4.4 Reaction mechanism of nanocomposite fibers; 4.5 Crystalline structures; 4.6 Thermal properties; 4.7 Intermolecular interactions; 4.8 Conclusions; References; 5 - Production of hybrid inorganic/carbon nanotube fillers via chemical vapor deposition for advanced polymer nanocomposites; 5.1 Introduction; 5.2 Carbon nanotubes origins; 5.3 The development of CNT hybrids 5.4 CNT/inorganic hybrid filler by CVD5.5 Advantages of using CNT/inorganic hybrid in polymer nanocomposites; 5.6 Synthesis and characterization of inorganic/CNT hybrid compounds; 5.7 Effect of hybrid and physically mixed MWCNT and alumina in phenolic/MWCNT-alumina composites; 5.8 Conclusions; 5.9 Future trends; Acknowledgments; References; Part Three - Nanoplatelets; 6 - Development of biobased polymer/clay nanocomposites: a critical review; 6.1 Introduction; 6.2 Nanoclay fillers; 6.3 Polymer/clay nanocomposites from biodegradable mixed sources; 6.4 Conclusions and future trends AcknowledgmentsReferences; 7 - Synthesis of graphene-based polymeric nanocomposites; 7.1 Introduction; 7.2 Functionalization of graphene; 7.3 Methods of fabrication of graphene-based polymer composites; 7.4 Properties of polymer/graphite/graphene nanocomposites; 7.5 Conclusions and future trends; Acknowledgments; References; 8 - Manufacturing and characterization of multifunctional polymer-reduced graphene oxide nanocomposites; 8.1 Introduction; 8.2 Materials and manufacturing; 8.3 Characterization; Acknowledgment; References; 9 - The processing of hierarchical nanocomposites 9.1 Introduction |
| Record Nr. | UNINA-9910816276403321 |
| Amsterdam, [Netherlands] : , : Woodhead Publishing, , 2015 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Manufacturing, Characterisation and Prop erties of Advanced Nanocomposites / / edited by Yu Dong (and three others)
| Manufacturing, Characterisation and Prop erties of Advanced Nanocomposites / / edited by Yu Dong (and three others) |
| Pubbl/distr/stampa | Basel : , : MDPI, , 2018 |
| Descrizione fisica | 1 online resource (ix, 152 pages) : iilustrations |
| Disciplina | 620.118 |
| Soggetto topico | Nanocomposites (Materials) |
| ISBN | 3-03897-189-8 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto | About the Special Issue Editors . vii -- Preface to "Manufacturing, Characterisation and Properties of Advanced Nanocomposites" . ix -- Yu Dong, Alokesh Pramanik, Dongyan Liu and Rehan Umer Manufacturing, Characterisation and Properties of Advanced Nanocomposites Reprinted from: J. Compos. Sci. 2018, 2, 46, doi: 10.3390/jcs2030046 . 1 -- Kean Wang, Pooria Pasbakhsh, Rangika Thilan De Silva and Kheng Lim Goh A Comparative Analysis of the Reinforcing Efficiency of Silsesquioxane Nanoparticles versus Apatite Nanoparticles in Chitosan Biocomposite Fibres Reprinted from: J. Compos. Sci. 2017, 1, 9, doi: 10.3390/jcs1010009 4 -- Arifur Rahman and Xiang-Fa Wu Computational Study of the Effects of Processing Parameters on the Nonlinear Elastoplastic Behavior of Polymer Nanoclay Composites Reprinted from: J. Compos. Sci. 2017, 1, 16, doi: 10.3390/jcs1020016 . 21 -- Wenqiang Liu, Yu Dong, Dongyan Liu, Yuxia Bai and Xiuzhen Lu Polylactic Acid (PLA)/Cellulose Nanowhiskers (CNWs) Composite Nanofibers: Microstructural and Properties Analysis Reprinted from: J. Compos. Sci. 2018, 2, 4, doi: 10.3390/jcs2010004 38 -- Alokesh Pramanik, Animesh Kumar Basak, Yu Dong, Subramaniam Shankar and Guy Littlefair Milling of Nanoparticles Reinforced Al-Based Metal Matrix Composites Reprinted from: J. Compos. Sci. 2018, 2, 13, doi: 10.3390/jcs2010013 . 52 -- Rehan Umer Manufacturing and Mechanical Properties of Graphene Coated Glass Fabric and Epoxy Composites Reprinted from: J. Compos. Sci. 2018, 2, 17, doi: 10.3390/jcs2020017 . 64 -- Ming-He Chen, Cing-Yu Ke and Chin-Lung Chiang Preparation and Performance of Ecofriendly Epoxy/Multilayer Graphene Oxide Composites with Flame-Retardant Functional Groups Reprinted from: J. Compos. Sci. 2018, 2, 18, doi: 10.3390/jcs2020018 . 79 -- Sanjeev Rao, Jahnavee Upadhyay, Kyriaki Polychronopoulou, Rehan Umer and Raj Das Reduced Graphene Oxide: Effect of Reduction on Electrical Conductivity Reprinted from: J. Compos. Sci. 2018, 2, 25, doi: 10.3390/jcs2020025 . 95 -- Animesh K. Basak, Alokesh Pramanik, Hamidreza Riazi, Mahyar Silakhori and Angus K. O. Netting Development of Pb-Free Nanocomposite Solder Alloys Reprinted from: J. Compos. Sci. 2018, 2, 28, doi: 10.3390/jcs2020028 . 107 -- Antonio Norio Nakagaito, Sohtaro Kanzawa and Hitoshi Takagi Polylactic Acid Reinforced with Mixed Cellulose and Chitin Nanofibers-Effect of Mixture Ratio on the Mechanical Properties of Composites Reprinted from: J. Compos. Sci. 2018, 2, 36, doi: 10.3390/jcs2020036 . 116 -- Cristobal Garcia, Irina Trendafilova and Andrea Zucchelli The Effect of Polycaprolactone Nanofibers on the Dynamic and Impact Behavior of Glass Fibre Reinforced Polymer Composites Reprinted from: J. Compos. Sci. 2018, 2, 43, doi: 10.3390/jcs2030043 . 128. |
| Record Nr. | UNINA-9910765893103321 |
| Basel : , : MDPI, , 2018 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Manufacturing, characterisation and properties of advanced nanocomposites / / edited by Yu Dong [and three others]
| Manufacturing, characterisation and properties of advanced nanocomposites / / edited by Yu Dong [and three others] |
| Pubbl/distr/stampa | Basel, Switzerland : , : MDPI - Multidisciplinary Digital Publishing Institute, , 2018 |
| Descrizione fisica | 1 online resource (152 pages) |
| Disciplina | 620.118 |
| Soggetto topico | Nanocomposites (Materials) |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto | About the Special Issue Editors -- Preface to "Manufacturing, Characterisation and Properties of Advanced Nanocomposites" -- Yu Dong, Alokesh Pramanik, Dongyan Liu and Rehan Umer Manufacturing, Characterisation and Properties of Advanced Nanocomposites Reprinted from: J. Compos. Sci. 2018, 2, 46, doi: 10.3390/jcs2030046 -- Kean Wang, Pooria Pasbakhsh, Rangika Thilan De Silva and Kheng Lim Goh A Comparative Analysis of the Reinforcing Efficiency of Silsesquioxane Nanoparticles versus Apatite Nanoparticles in Chitosan Biocomposite Fibres Reprinted from: J. Compos. Sci. 2017, 1, 9, doi: 10.3390/jcs1010009 -- Arifur Rahman and Xiang-Fa Wu Computational Study of the Effects of Processing Parameters on the Nonlinear Elastoplastic Behavior of Polymer Nanoclay Composites Reprinted from: J. Compos. Sci. 2017, 1, 16, doi: 10.3390/jcs1020016 -- Wenqiang Liu, Yu Dong, Dongyan Liu, Yuxia Bai and Xiuzhen Lu Polylactic Acid (PLA)/Cellulose Nanowhiskers (CNWs) Composite Nanofibers: Microstructural and Properties Analysis Reprinted from: J. Compos. Sci. 2018, 2, 4, doi: 10.3390/jcs2010004 -- Alokesh Pramanik, Animesh Kumar Basak, Yu Dong, Subramaniam Shankar and Guy Littlefair Milling of Nanoparticles Reinforced Al-Based Metal Matrix Composites Reprinted from: J. Compos. Sci. 2018, 2, 13, doi: 10.3390/jcs2010013 -- Rehan Umer Manufacturing and Mechanical Properties of Graphene Coated Glass Fabric and Epoxy Composites Reprinted from: J. Compos. Sci. 2018, 2, 17, doi: 10.3390/jcs2020017 -- Ming-He Chen, Cing-Yu Ke and Chin-Lung Chiang Preparation and Performance of Ecofriendly Epoxy/Multilayer Graphene Oxide Composites with Flame-Retardant Functional Groups Reprinted from: J. Compos. Sci. 2018, 2, 18, doi: 10.3390/jcs2020018 -- Sanjeev Rao, Jahnavee Upadhyay, Kyriaki Polychronopoulou, Rehan Umer and Raj Das Reduced Graphene Oxide: Effect of Reduction on Electrical Conductivity Reprinted from: J. Compos. Sci. 2018, 2, 25, doi: 10.3390/jcs2020025 -- Animesh K. Basak, Alokesh Pramanik, Hamidreza Riazi, Mahyar Silakhori and Angus K. O. Netting Development of Pb-Free Nanocomposite Solder Alloys Reprinted from: J. Compos. Sci. 2018, 2, 28, doi: 10.3390/jcs2020028 -- Antonio Norio Nakagaito, Sohtaro Kanzawa and Hitoshi Takagi Polylactic Acid Reinforced with Mixed Cellulose and Chitin Nanofibers-Effect of Mixture Ratio on the Mechanical Properties of Composites Reprinted from: J. Compos. Sci. 2018, 2, 36, doi: 10.3390/jcs2020036 -- Cristobal Garcia, Irina Trendafilova and Andrea Zucchelli The Effect of Polycaprolactone Nanofibers on the Dynamic and Impact Behavior of Glass Fibre Reinforced Polymer Composites Reprinted from: J. Compos. Sci. 2018, 2, 43, doi: 10.3390/jcs2030043. |
| Record Nr. | UNINA-9910674020903321 |
| Basel, Switzerland : , : MDPI - Multidisciplinary Digital Publishing Institute, , 2018 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Multiscaled PVA bionanocomposite films : characterisation and nanoscale modelling / / Mohanad Mousa, Yu Dong
| Multiscaled PVA bionanocomposite films : characterisation and nanoscale modelling / / Mohanad Mousa, Yu Dong |
| Autore | Mousa Mohanad |
| Edizione | [1st ed. 2021.] |
| Pubbl/distr/stampa | Singapore : , : Springer, , [2021] |
| Descrizione fisica | 1 online resource (XI, 179 p. 84 illus., 70 illus. in color.) |
| Disciplina | 620.118 |
| Soggetto topico |
Nanocomposites (Materials)
Polyvinyl alcohol Thin films |
| ISBN | 981-15-8771-X |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto | Chapter 1. Introduction -- Chapter 2 Materials, methodology and characterisation techniques -- Chapter 3 PVA/BC bionancomposite films with particle size effect -- Chapter 4 PVA bionanocomposite films with different particle shapes and structures -- Chapter 5 3D interphase of PVA bionanocomposite films -- Chapter 6 Micromechanical modelling of PVA bionanocomposite films. |
| Record Nr. | UNISA-996466745503316 |
Mousa Mohanad
|
||
| Singapore : , : Springer, , [2021] | ||
| Lo trovi qui: Univ. di Salerno | ||
| ||
Multiscaled PVA Bionanocomposite Films : Characterisation and Nanoscale Modelling / / by Mohanad Mousa, Yu Dong
| Multiscaled PVA Bionanocomposite Films : Characterisation and Nanoscale Modelling / / by Mohanad Mousa, Yu Dong |
| Autore | Mousa Mohanad |
| Edizione | [1st ed. 2021.] |
| Pubbl/distr/stampa | Singapore : , : Springer Nature Singapore : , : Imprint : Springer, , 2021 |
| Descrizione fisica | 1 online resource (XI, 179 p. 84 illus., 70 illus. in color.) |
| Disciplina | 620.118 |
| Soggetto topico |
Surfaces (Physics)
Materials - Analysis Microtechnology Microelectromechanical systems Biomaterials Surfaces (Technology) Thin films Ceramic materials Surface and Interface and Thin Film Characterization and Analytical Technique Microsystems and MEMS Surfaces, Interfaces and Thin Film Ceramics |
| ISBN | 981-15-8771-X |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto | Chapter 1. Introduction -- Chapter 2 Materials, methodology and characterisation techniques -- Chapter 3 PVA/BC bionancomposite films with particle size effect -- Chapter 4 PVA bionanocomposite films with different particle shapes and structures -- Chapter 5 3D interphase of PVA bionanocomposite films -- Chapter 6 Micromechanical modelling of PVA bionanocomposite films. |
| Record Nr. | UNINA-9910483068003321 |
Mousa Mohanad
|
||
| Singapore : , : Springer Nature Singapore : , : Imprint : Springer, , 2021 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||