top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
AC/DC hybrid large-scale power grid system protection / / Xinzhou Dong
AC/DC hybrid large-scale power grid system protection / / Xinzhou Dong
Autore Dong Xinzhou
Pubbl/distr/stampa Singapore : , : Springer, , [2023]
Descrizione fisica 1 online resource (338 pages)
Disciplina 621.317
Soggetto topico Electric power systems - Protection
Electric power distribution - Security measures
Electric power distribution
ISBN 9789811964862
9789811964855
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Intro -- Foreword by Zhou Xiaoxin -- Foreword by Sun Guanghui -- Preface -- Contents -- 1 Overview -- 1.1 Analysis of Typical Chain Failures in Domestic and International Power Grids -- 1.1.1 2012 Southern Grid AC Failure Triggers Phase Change Failure [1] -- 1.1.2 Power Outage in Brazil -- 1.2 Interlocking Faults in AC-DC Hybrid Grids -- 1.2.1 Current Status and Development Trend of Domestic and International Power Grids -- 1.2.2 Key Features of the AC-DC Hybrid Grid -- 1.2.3 Interlocking Faults in AC-DC Hybrid Grids -- 1.3 System Protection Against Interlocking Faults in Mixed AC-DC Grids -- 1.3.1 Defined Functions and Components of System Protection -- 1.3.2 Our Three Lines of Defense [44] -- 1.3.3 Special Protection Systems [48] -- 2 Distance Protection Against Overload -- 2.1 Analysis of the Action Behavior of the Distance III Section Under Accidental Overload -- 2.1.1 Triggering Events for Accidental Overload -- 2.1.2 Action Behavior of Distance III Segments During Dynamics -- 2.2 Network Analysis of Accidental Overload -- 2.2.1 Station Domain Accidental Overload Versus Nonstation Domain Accidental Overload -- 2.2.2 Network Analysis of Nonstation Domain Accidental Overload -- 2.3 Analysis of the Conditions for the Operation of the Distance III Section Under Accidental Overload -- 2.3.1 Operating Condition 1: The Line is Heavily Loaded, and the Equivalent System Power Angle is Stable at Both Ends -- 2.3.2 Operating Condition 2: The Line is Heavily Loaded, and the Equivalent System Voltage at Both Ends is Stable -- 2.3.3 Adjustment Conditions: Protection Installed on Long Lines and Large Fixed Values -- 2.3.4 Summary -- 2.4 Identification Methods for Accidental Overload -- 2.4.1 Division of the Incident Overload Action Domain and Protection Action Domain -- 2.4.2 Identification of Dynamic Processes of Accidental Overload.
2.5 Distance III Accidental Overload Blocking Scheme -- 2.5.1 Description of the Lockout Program -- 2.5.2 Lockout Logic -- 2.6 Solving for the Davinan Equivalent Impedance -- 2.7 Adaptive Adjustment of Distance Protection Based on Shared Information in the Station Domain -- 2.7.1 Factors Affecting Distance III Segment Adjustment and Performance -- 2.7.2 Adaptive Tuning Scheme -- 2.7.3 Simulation Analysis of Overload Blocking Performance -- 2.7.4 Simulation Analysis of Intra-Zone Faults and Complex Fault Opening -- 2.7.5 Summary -- 3 Immunityin Distance Protection of Oscillations -- 3.1 Multiphase Compensated Distance Relays -- 3.2 Multiphase Compensated Distance Relay Performance Analysis -- 3.2.1 Oscillation Without Fault Condition -- 3.2.2 Fault Conditions Without Oscillation -- 3.2.3 Oscillation Accompanied by Fault Conditions -- 3.2.4 Effect of Transition Resistors on Multiphase Compensated Distance Relays -- 3.3 Distance Protection from Power System Oscillations -- 3.3.1 Improved Multiphase Compensated Distance Protection -- 3.3.2 Distance Protection Based on Information from Both Ends -- 3.4 EMTP Simulation Experiments -- 3.4.1 Simulation System -- 3.4.2 Power System Oscillations Without Fault Conditions -- 3.4.3 Power System Oscillation with a Single-Phase Ground Fault in the Zone -- 3.4.4 Power System Oscillation with Out-Of-Area Single-Phase Ground Fault Conditions -- 3.4.5 Transition Resistance Test -- 3.5 Summary -- 4 Commutation Failure Prevention and Control -- 4.1 Analysis of the DC Commutation Failure Mechanism -- 4.1.1 First Commutation Failure -- 4.1.2 Continuous Commutation Failure -- 4.1.3 Multifed DC Commutation Failure -- 4.2 Early Warning Measures for Commutation Failure in a Hybrid AC/DC Grid -- 4.2.1 Early Warning Measures for the First Commutation Failure -- 4.2.2 Early Warning Measures for Continuous Commutation Failure.
4.2.3 Early Warning Measures for Multifeeder DC Commutation Failure -- 4.3 Commutation Failure Suppression for the AC/DC Hybrid Grid -- 4.3.1 Suppression Measures for the First Commutation Failure -- 4.3.2 Suppression Measures Against Successive Commutation Failures -- 4.3.3 Suppression Measures for Multifeed DC Successive Commutation Failures -- 4.4 Summary -- 5 DC Participation in Emergency Tidal Control -- 5.1 Study of Multidimensional Coupling Mechanism of an AC-DC Hybrid Grid -- 5.1.1 Methodology for Evaluating the Degree of Commutation Bus Voltage Interactions in Hybrid DC Networks with Different Control Methods -- 5.1.2 Calculation of the Maximum Delivered Power of HVDC Based on Equivalent Impedance -- 5.1.3 Short-Circuit Ratio and Operational Evaluation Method for Multifeed-In Operation Based on Equivalent Impedance -- 5.1.4 Multifeeder System Tuner Capacity Calculation Method Based on Power Support Requirements -- 5.2 Multi-indicator Static Security Domain for AC-DC Hybrid Grids -- 5.2.1 Definition and Model of a Multimetric Static Safety Domain for AC-DC Hybrid Grids -- 5.2.2 A Method for Inscribing the Full-Dimensional Static Safety Domain of Hybrid AC-DC Grids Considering Different Control Methods -- 5.2.3 Methodology for Inscribing Low-Dimensional Focal Variable Safety Sections (Profiles) in the Static Safety Domain of AC-DC Hybrid Grids -- 5.2.4 Static Safety Domain Inscription Method for AC-DC Hybrid Grids Containing Controllable Series Capacitor Converters -- 5.2.5 Methods for Inscribing the Decoupled Security Domain of an AC-DC Hybrid Grid -- 5.2.6 Evolutionary Characteristics and Impact Analysis of the Static Safety Domain of Hybrid AC-DC Grids -- 5.3 Coordinated Control Objectives and Control Methods When Multiple DC Systems Are Involved in the Rapid Control of Tidal Currents.
5.3.1 AC-DC Static Safety Domain Under Meter and Time Characteristic DC Active Adjustment Method -- 5.3.2 Safety Correction Strategy for Hybrid AC-DC Grids Based on Safety Distance Sensitivity -- 5.3.3 Optimal Scheduling Based on Safety-Corrected Control in the Static Safety Domain of Hybrid AC-DC Grids -- 5.3.4 Preventive Correction Coordination Control Based on Static Safety Domain for Hybrid AC-DC Grids -- 5.3.5 Fast Tidal Control Based on Decoupled Security Domains -- 5.4 Summary -- 6 Adaptive Overload Protection for Overhead Transmission Lines -- 6.1 Introduction -- 6.2 Line Emergency Current-Carrying Capacity Analysis -- 6.2.1 Mechanical Strength -- 6.2.2 Arc Drape -- 6.2.3 Fittings and Various Types of Connectors -- 6.2.4 Summary of Emergency Current-Carrying Capacity -- 6.3 Line Adaptive Overload Protection Action Time -- 6.3.1 Line Temperature Calculation and Action Time Analysis -- 6.3.2 Prediction Based on the Echo State Network Method -- 6.4 Component Scheme for Line Adaptive Overload Protection -- 6.4.1 Rectification Scheme and Action Logic -- 6.4.2 Algorithm Flow -- 6.4.3 Applications and Calculations -- 6.4.4 Summary -- Appendix Transient Temperature Calculations -- Joule Heat Absorption -- Heat Absorption by Insolation -- Convection Heat Dissipation -- Radiation Heat Dissipation -- Method of Calculation -- Wire Parameters -- Bibliography.
Record Nr. UNINA-9910627259303321
Dong Xinzhou  
Singapore : , : Springer, , [2023]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
The theory of fault travel waves and its application / / Xinzhou Dong
The theory of fault travel waves and its application / / Xinzhou Dong
Autore Dong Xinzhou
Pubbl/distr/stampa Singapore : , : Springer, , [2022]
Descrizione fisica 1 online resource (745 pages)
Disciplina 621.3104
Soggetto topico Electric fault location - Data processing
Short circuits
ISBN 9789811904042
9789811904035
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Intro -- Foreword by Jiali He -- Foreword by Yaozhong Ge -- Foreword by Qixun Yang -- Preamble -- Contents -- 1 Introduction -- 1.1 Power Systems and Faults -- 1.2 Power System Failure Analysis -- 1.2.1 Kirchhoff's Law -- 1.2.2 Nodal Voltage and Loop Current Methods -- 1.2.3 Symmetric Component Method -- 1.2.4 Laplace Transform Method -- 1.2.5 Shortcomings of Existing Power System Fault Analysis -- 1.3 Challenges to Traditional Protective Relaying and Fault Detection Techniques -- 1.3.1 Transmission Line Split-Phase Current Differential Protection -- 1.3.2 Flexible DC Grid Protection -- 1.3.3 Single-Phase Grounding Protection for Distribution Lines in Neutral Point Noneffective Grounding Systems -- 1.3.4 Power Line Fault Location -- 2 Fundamentals of Electromagnetic Waves -- 2.1 Time-Varying Electromagnetic Fields -- 2.1.1 Maxwell's Equations -- 2.1.2 Poynting's Theorem -- 2.2 Wave Equations and Their D'Alembert Solutions -- 2.2.1 Wave Equations for the Electromagnetic Field -- 2.2.2 Dynamic Potentials -- 2.2.3 D'Alembert Solutions of the Wave Equation -- 2.3 Planar Electromagnetic Waves -- 2.3.1 Uniform Plane Waves in an Ideal Medium -- 2.3.2 Uniform Plane Waves in a Conductive Medium -- 2.3.3 Reflection of Electromagnetic Waves at the Interface of Different Media -- 2.4 Guided Electromagnetic Waves in Homogeneous Transmission Lines -- 2.4.1 Basic Equations for a Homogeneous Transmission Line -- 2.4.2 Sinusoidal Steady-State Solutions of the Uniform Transmission Line Equation -- 2.4.3 Equivalent Circuits and Operating States for Uniform Transmission Lines -- 2.5 Guided Electromagnetic Waves in Parallel Multiconductor Lines -- 2.5.1 Wave Equations for Parallel Multiconductor Lines -- 2.5.2 Phase-Modal Transformation of Parallel Multiconductor Lines -- 2.5.3 Wave Impedance and Wave Velocity on a Parallel Multiconductor Line Modulus.
3 Fault Traveling Wave Theory -- 3.1 Fault Traveling Waves in Single-Phase Uniform Lossless Lines -- 3.1.1 Generation of Fault Traveling Waves -- 3.1.2 Fluctuation Equation for a Single Conductor Line -- 3.2 Fault Traveling Waves in Three-Phase Transmission Lines -- 3.2.1 Phase Mode Transformation -- 3.2.2 Composite Modulus Network -- 3.3 Traveling Wave Phenomena at Nominal Frequency -- 3.3.1 Line Wave Decomposition -- 3.3.2 Folded Reflection Phenomena of Traveling Waves -- 3.4 Status of Research on the Fault Traveling Wave Problem -- 3.5 Transient Solutions for Fault Traveling Waves Without Considering the Parameter-Dependent Frequency Characteristics -- 3.5.1 Basic Idea of the Grid Method for Solving Fault Traveling Waves [17] -- 3.5.2 Analysis of Faulted Traveling Wave Sources -- 3.5.3 Initial Traveling Waves for Different Traveling Wave Source Moduli -- 3.5.4 Representation of Power Networks -- 3.5.5 Reflection of Traveling Waves at Each Node -- 3.5.6 Fault Traveling Wave Resolution Calculation Method-Frequency Domain Method -- 3.6 Faulted Traveling Wave Transient Solutions Considering Parametric-Dependent Frequency Characteristics [17] -- 3.6.1 Complex Frequency Domain Solutions of the Fluctuation Equations for Parallel Multiconductor Lines -- 3.6.2 Selection of the Fitting Function for Traveling Waves Under Frequency-Dependent Characteristics -- 3.6.3 Acquisition of Parameters -- 3.7 Fault Steady-State Calculations -- 3.8 Computer Implementation of Fault Traveling Wave Transient Solutions -- 3.8.1 Representation and Storage of Power Networks -- 3.8.2 Network Changes After a Failure -- 3.8.3 Generation Method for Traveling Wave Propagation Paths -- 3.8.4 Calculation of Fault Traveling Waves -- 3.8.5 Analysis of Algorithms -- 3.9 Instantaneous Reactive Power Theory and Fault Direction Characteristics.
3.9.1 Overview of Instantaneous Reactive Power Theory -- 3.9.2 Definition of Instantaneous Reactive Power Based on the Hilbert Transform -- 3.9.3 Fault Direction Characteristics of Reactive Power Under the Hilbert Transform [16] -- 3.10 Faulty Traveling Wave Characteristics for Various Fault Types -- 4 Wavelet Transform and Its Application to Fault Traveling Wave Analysis -- 4.1 Basic Concepts -- 4.1.1 History of Wavelet Analysis and Overview of Its Applications -- 4.1.2 Time-Frequency Localized Representation of the Signal -- 4.1.3 Continuous Wavelet Transform -- 4.1.4 Time-Frequency Localization Performance of Wavelet Transform -- 4.1.5 Two Important Types of Wavelet Transforms -- 4.1.6 Wavelet Representation of the Signal -- 4.2 Discrete Wavelet Transform -- 4.2.1 Discrete Wavelets and Discrete Wavelet Transforms -- 4.2.2 Multiresolution Analysis with Scale Functions -- 4.2.3 Mallat Algorithm -- 4.2.4 Coefficient Characteristics of the R-Wavelet -- 4.2.5 Applications of the Discrete Wavelet Transform -- 4.3 Dyadic Wavelet Transform and Singularity Detection of the Signal -- 4.3.1 Dyadic Wavelet and Dyadic Wavelet Transform -- 4.3.2 B-Sample-Based Dyadic Wavelet Function with a Scale Function -- 4.3.3 Decomposition and Reconstruction Algorithm for Dyadic Wavelet Transform -- 4.3.4 Wavelet Transform Modal Maxima Representation of Signals and Singularity Detection Theory -- 4.3.5 Reconstructing the Original Signal Using Wavelet Transform Modal Maxima [51] -- 4.3.6 Applications of the Dyadic Wavelet Transform [57] -- 4.4 Wavelet Representation of Fault Traveling Waves -- 4.4.1 Introduction -- 4.4.2 Fault Characteristics of Traveling Waves -- 4.4.3 Wavelet Transform Mode Maxima Representation of Various Traveling Waves -- 4.4.4 Comparison of Voltage Traveling Waves, Current Traveling Waves, and Directional Traveling Waves.
5 Fault Traveling Wave Transmission Characteristics of Transformers and Secondary Cables -- 5.1 Current Transformer Model and Its Dynamic Transfer Characteristics -- 5.1.1 Operating Principle of Current Transformers and Their Electromagnetic Transient Model -- 5.1.2 Operating Frequency Transfer Characteristics of Current Transformers -- 5.1.3 Transient Traveling Wave Transfer Characteristics of Current Transformers -- 5.2 Voltage Transformer Model and Its Dynamic Transfer Characteristics -- 5.2.1 Operating Principle of Voltage Transformers and Their Corresponding Electromagnetic Transient Models -- 5.2.2 Operating Frequency Transfer Characteristics of Capacitance-Divided Voltage Transformers -- 5.2.3 Transient Traveling Wave Transfer Characteristics of Capacitive Voltage Transformers Under a Simplified Model [69] -- 5.2.4 Transient Traveling Wave Transfer Characteristics of Capacitive Voltage Transformers Under a Detailed Model -- 5.3 Fault Traveling Wave Transmission Characteristics of Secondary Cables -- 5.3.1 Equivalence Analysis Between the Centralized and Distributed Parameter Models for the Secondary-Side Cable -- 5.3.2 Equivalent Modeling of Secondary-Side Cables -- 5.4 Traveling Wave Transmission Characteristics of the Secondary Current Transmission Channel -- 5.4.1 Joint Modeling of Secondary Current Loops [89] -- 5.4.2 Analysis of the Secondary-Side Circuit Transmission Characteristics [89] -- 6 Transmission Line Longitudinal Traveling Wave Direction Protection -- 6.1 Wave Impedance Relays -- 6.1.1 Basic Principles of Wave Impedance Relays -- 6.1.2 Algorithmic Study of Wave Impedance Relays -- 6.1.3 Performance Analysis of Wave Impedance Relays -- 6.1.4 Use of Wave Impedance Relays to Form Longitudinal Directional Protection -- 6.2 Uniform Traveling Wave Direction Relay -- 6.2.1 Fundamentals of the Unified Traveling Wave Direction Relay.
6.2.2 Uniform Traveling Wave Direction Relay Action Criterion -- 6.2.3 Modeling and Simulation -- 6.2.4 Motion Characteristics Analysis -- 6.2.5 Longitudinal Directional Protection of Transmission Lines Based on Unified Traveling Wave Directional Relays -- 6.3 Polarization Current Traveling Wave Direction Relay -- 6.3.1 Consistency of Line Wave Polarity for Voltage Faults at Different Frequency Bands -- 6.3.2 Polarization Current Traveling Wave Direction Relay Principle and Algorithm -- 6.3.3 Performance Analysis of Polarization Current Traveling Wave Direction Relay Operation -- 6.3.4 TP-01 Ultrahigh-Speed Traveling Wave Protection Device -- 7 Transmission Line Longitudinal Traveling Wave Differential Protection -- 7.1 Traveling Wave Differential Protection -- 7.1.1 Basic Principle of Traveling Wave Differential Protection -- 7.1.2 Traveling Wave Differential Current and Traveling Wave Braking Current Components [112] -- 7.1.3 Unbalanced Traveling Differential Current Analysis During Out-of-Area Disturbances or Faults -- 7.1.4 Comparison of Traveling Wave Differential Currents During in- and Out-of-Zone Faults -- 7.1.5 Action Criteria -- 7.1.6 Protection Algorithms -- 7.1.7 Modeling Simulation and Performance Evaluation -- 7.1.8 PT Disconnection Handling -- 7.1.9 TP-02 Traveling Wave Differential Protection Device -- 7.2 Reconfiguration of Current Traveling Wave Differential Protection -- 7.2.1 Reconstructing the Current Traveling Wave -- 7.2.2 Characterization of Reconstructed Current Traveling Waves -- 7.2.3 Principle of Reconfiguration of Current Traveling Wave Differential Protection -- 7.2.4 Reconfigured Current Traveling Wave Differential Protection Algorithm -- 7.2.5 Reconfiguration of Current Traveling Wave Differential Protection Performance Evaluation -- 7.3 Traveling Wave Differential Protection Based on Wavelet Transform Modulus Maxima.
7.3.1 Ideas for Constructing Traveling Wave Differential Protection Using Initial Traveling Wave Modulus Maxima.
Record Nr. UNINA-9910553067703321
Dong Xinzhou  
Singapore : , : Springer, , [2022]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui