Floer homology groups in Yang-Mills theory / / S.K. Donaldson with the assistance of M. Furuta and D. Kotschick [[electronic resource]] |
Autore | Donaldson S. K. |
Pubbl/distr/stampa | Cambridge : , : Cambridge University Press, , 2002 |
Descrizione fisica | 1 online resource (vii, 236 pages) : digital, PDF file(s) |
Disciplina | 530.14/35 |
Collana | Cambridge tracts in mathematics |
Soggetto topico |
Yang-Mills theory
Floer homology Geometry, Differential |
ISBN |
1-107-12463-8
1-280-43046-X 9786610430468 0-511-17547-7 0-511-15583-2 0-511-30404-8 0-511-54309-3 0-511-04453-4 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | Yang-Mills theory over compact manifolds -- The case of a compact 4-manifold -- Technical results -- Manifolds with tubular ends -- Yang-Mills theory and 3-manifolds -- Initial discussion -- The Chern-Simons functional -- The instanton equation -- Linear operators -- Appendix A: local models -- Appendix B: pseudo-holomorphic maps -- Appendix C: relations with mechanics -- Linear analysis -- Separation of variables -- Sobolev spaces on tubes -- Remarks on other operators -- The addition property -- Weighted spaces -- Floer's grading function; relation with the Atiyah, Patodi, Singer theory -- Refinement of weighted theory -- L[superscript p] theory -- Gauge theory and tubular ends -- Exponential decay -- Moduli theory -- Moduli theory and weighted spaces -- Gluing instantons -- Gluing in the reducible case -- Appendix A: further analytical results -- Convergence in the general case -- Gluing in the Morse--Bott case -- The Floer homology groups -- Compactness properties -- Floer's instanton homology groups -- Independence of metric -- Orientations -- Deforming the equations -- Transversality arguments -- U(2) and SO(3) connections -- Floer homology and 4-manifold invariants -- The conceptual picture -- The straightforward case -- Review of invariants for closed 4-manifolds -- Invariants for manifolds with boundary and b[superscript +]] 1 -- Reducible connections and cup products -- The maps D[subscript 1], D[subscript 2] -- Manifolds with b[superscript +] = 0, 1 -- The case b[superscript +] = 1. |
Record Nr. | UNINA-9910454923903321 |
Donaldson S. K. | ||
Cambridge : , : Cambridge University Press, , 2002 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Floer homology groups in Yang-Mills theory / / S.K. Donaldson with the assistance of M. Furuta and D. Kotschick [[electronic resource]] |
Autore | Donaldson S. K. |
Pubbl/distr/stampa | Cambridge : , : Cambridge University Press, , 2002 |
Descrizione fisica | 1 online resource (vii, 236 pages) : digital, PDF file(s) |
Disciplina | 530.14/35 |
Collana | Cambridge tracts in mathematics |
Soggetto topico |
Yang-Mills theory
Floer homology Geometry, Differential |
ISBN |
1-107-12463-8
1-280-43046-X 9786610430468 0-511-17547-7 0-511-15583-2 0-511-30404-8 0-511-54309-3 0-511-04453-4 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | Yang-Mills theory over compact manifolds -- The case of a compact 4-manifold -- Technical results -- Manifolds with tubular ends -- Yang-Mills theory and 3-manifolds -- Initial discussion -- The Chern-Simons functional -- The instanton equation -- Linear operators -- Appendix A: local models -- Appendix B: pseudo-holomorphic maps -- Appendix C: relations with mechanics -- Linear analysis -- Separation of variables -- Sobolev spaces on tubes -- Remarks on other operators -- The addition property -- Weighted spaces -- Floer's grading function; relation with the Atiyah, Patodi, Singer theory -- Refinement of weighted theory -- L[superscript p] theory -- Gauge theory and tubular ends -- Exponential decay -- Moduli theory -- Moduli theory and weighted spaces -- Gluing instantons -- Gluing in the reducible case -- Appendix A: further analytical results -- Convergence in the general case -- Gluing in the Morse--Bott case -- The Floer homology groups -- Compactness properties -- Floer's instanton homology groups -- Independence of metric -- Orientations -- Deforming the equations -- Transversality arguments -- U(2) and SO(3) connections -- Floer homology and 4-manifold invariants -- The conceptual picture -- The straightforward case -- Review of invariants for closed 4-manifolds -- Invariants for manifolds with boundary and b[superscript +]] 1 -- Reducible connections and cup products -- The maps D[subscript 1], D[subscript 2] -- Manifolds with b[superscript +] = 0, 1 -- The case b[superscript +] = 1. |
Record Nr. | UNINA-9910780059403321 |
Donaldson S. K. | ||
Cambridge : , : Cambridge University Press, , 2002 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|