top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Advanced Optimization Methods and Big Data Applications in Energy Demand Forecast
Advanced Optimization Methods and Big Data Applications in Energy Demand Forecast
Autore Gómez Vela Francisco A
Pubbl/distr/stampa Basel, Switzerland, : MDPI - Multidisciplinary Digital Publishing Institute, 2021
Descrizione fisica 1 online resource (100 p.)
Soggetto topico Research & information: general
Technology: general issues
Soggetto non controllato autoregression
clustering
data filtration
data processing
decision tree
deep learning
electricity demand
energy demand
energy efficiency
evolutionary computation
exponential smoothing
forecasting
k-nearest neighbors
n/a
neuroevolution
photovoltaic power plant
regression
residential building
short-term forecasting
temporal convolutional network
time series
time series forecasting
time-series forecasting
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910557776003321
Gómez Vela Francisco A  
Basel, Switzerland, : MDPI - Multidisciplinary Digital Publishing Institute, 2021
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Computational Methods for the Analysis of Genomic Data and Biological Processes
Computational Methods for the Analysis of Genomic Data and Biological Processes
Autore Gómez Vela Francisco A
Pubbl/distr/stampa Basel, Switzerland, : MDPI - Multidisciplinary Digital Publishing Institute, 2021
Descrizione fisica 1 online resource (222 p.)
Soggetto topico Biology, life sciences
Research & information: general
Soggetto non controllato binding sites
bioinformatics
bioinformatics analysis
CAMTA1
cancer
CBF
chilling stress
Chou's 5-steps rule
chromatin interactions
classification
clustering
computational biology
computational intelligence
Convolution Neural Network (CNN)
CRISPR-Cas9
data mining
deep learning
differential genes expression
differentiation
DNA methylation
DNA N6-methyladenine
DREB
ensembles
eQTL
exercise
fine-mapping
gene co-expression network
Gene Ontology
gene-set enrichment
genome architecture
genomics
hepatocellular carcinoma
HIGD2A
high-fat diet
hypoxia
immune response
infiltration
infiltration tactics optimization algorithm
Long Short-Term Memory (LSTM)
machine learning
machine-learning
meta-analysis
methylation
microarray
miRNA
mRNA expression
murine coronavirus
n/a
obesity
pathway
pathways
potential therapeutic targets
power
prediction
proteomics
quercetin
Reactome Pathways
RNA N6-methyladenosine site
single-cell clone
systems biology
text mining
transcription factor
transcriptomics
viral infection
yeast genome
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910557129603321
Gómez Vela Francisco A  
Basel, Switzerland, : MDPI - Multidisciplinary Digital Publishing Institute, 2021
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Genetic Programming [[electronic resource] ] : 23rd European Conference, EuroGP 2020, Held as Part of EvoStar 2020, Seville, Spain, April 15–17, 2020, Proceedings / / edited by Ting Hu, Nuno Lourenço, Eric Medvet, Federico Divina
Genetic Programming [[electronic resource] ] : 23rd European Conference, EuroGP 2020, Held as Part of EvoStar 2020, Seville, Spain, April 15–17, 2020, Proceedings / / edited by Ting Hu, Nuno Lourenço, Eric Medvet, Federico Divina
Edizione [1st ed. 2020.]
Pubbl/distr/stampa Cham : , : Springer International Publishing : , : Imprint : Springer, , 2020
Descrizione fisica 1 online resource (306 pages)
Disciplina 006.31
Collana Theoretical Computer Science and General Issues
Soggetto topico Computer science
Computer systems
Computers, Special purpose
Computer networks
Artificial intelligence
Computer engineering
Theory of Computation
Computer System Implementation
Special Purpose and Application-Based Systems
Computer Communication Networks
Artificial Intelligence
Computer Engineering and Networks
ISBN 3-030-44094-X
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Hessian Complexity Measure for Genetic Programming-based Imputation Predictor Selection in Symbolic Regression with Incomplete Data -- Seeding Grammars in Grammatical Evolution to Improve Search Based Software Testing -- Incremental Evolution and Development of Deep Artificial Neural Networks -- Investigating the Use of Geometric Semantic Operators in Vectorial Genetic Programming -- Comparing Genetic Programming Approaches for Non-Functional Genetic Improvement -- Automatically Evolving Lookup Tables for Function Approximation -- Optimising Optimisers with Push GP -- An Evolutionary View on Reversible Shift-invariant Transformations -- Benchmarking Manifold Learning Methods on a Large Collection of Datasets -- Ensemble Genetic Programming -- SGP-DT: Semantic Genetic Programming Based on Dynamic Targets -- Effect of Parent Selection Methods on Modularity -- Time Control or Size Control? Reducing Complexity and Improving Accuracy of Genetic Programming Models -- Challenges of Program Synthesis with Grammatical Evolution -- Detection of Frailty Using Genetic Programming : The Case of Older People in Piedmont, Italy -- Is k Nearest Neighbours Regression Better than GP -- Guided Subtree Selection for Genetic Operators in Genetic Programming for Dynamic Flexible Job Shop Scheduling -- Classification of Autism Genes using Network Science and Linear Genetic Programming.
Record Nr. UNISA-996418219703316
Cham : , : Springer International Publishing : , : Imprint : Springer, , 2020
Materiale a stampa
Lo trovi qui: Univ. di Salerno
Opac: Controlla la disponibilità qui
Genetic Programming : 23rd European Conference, EuroGP 2020, Held as Part of EvoStar 2020, Seville, Spain, April 15–17, 2020, Proceedings / / edited by Ting Hu, Nuno Lourenço, Eric Medvet, Federico Divina
Genetic Programming : 23rd European Conference, EuroGP 2020, Held as Part of EvoStar 2020, Seville, Spain, April 15–17, 2020, Proceedings / / edited by Ting Hu, Nuno Lourenço, Eric Medvet, Federico Divina
Edizione [1st ed. 2020.]
Pubbl/distr/stampa Cham : , : Springer International Publishing : , : Imprint : Springer, , 2020
Descrizione fisica 1 online resource (306 pages)
Disciplina 006.31
006.3823
Collana Theoretical Computer Science and General Issues
Soggetto topico Computer science
Computer systems
Computers, Special purpose
Computer networks
Artificial intelligence
Computer engineering
Theory of Computation
Computer System Implementation
Special Purpose and Application-Based Systems
Computer Communication Networks
Artificial Intelligence
Computer Engineering and Networks
ISBN 3-030-44094-X
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Hessian Complexity Measure for Genetic Programming-based Imputation Predictor Selection in Symbolic Regression with Incomplete Data -- Seeding Grammars in Grammatical Evolution to Improve Search Based Software Testing -- Incremental Evolution and Development of Deep Artificial Neural Networks -- Investigating the Use of Geometric Semantic Operators in Vectorial Genetic Programming -- Comparing Genetic Programming Approaches for Non-Functional Genetic Improvement -- Automatically Evolving Lookup Tables for Function Approximation -- Optimising Optimisers with Push GP -- An Evolutionary View on Reversible Shift-invariant Transformations -- Benchmarking Manifold Learning Methods on a Large Collection of Datasets -- Ensemble Genetic Programming -- SGP-DT: Semantic Genetic Programming Based on Dynamic Targets -- Effect of Parent Selection Methods on Modularity -- Time Control or Size Control? Reducing Complexity and Improving Accuracy of Genetic Programming Models -- Challenges of Program Synthesis with Grammatical Evolution -- Detection of Frailty Using Genetic Programming : The Case of Older People in Piedmont, Italy -- Is k Nearest Neighbours Regression Better than GP -- Guided Subtree Selection for Genetic Operators in Genetic Programming for Dynamic Flexible Job Shop Scheduling -- Classification of Autism Genes using Network Science and Linear Genetic Programming.
Record Nr. UNINA-9910409674103321
Cham : , : Springer International Publishing : , : Imprint : Springer, , 2020
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui