Classical and Quantum Dynamics [[electronic resource] ] : From Classical Paths to Path Integrals / / by Walter Dittrich, Martin Reuter |
Autore | Dittrich Walter |
Edizione | [6th ed. 2020.] |
Pubbl/distr/stampa | Cham : , : Springer International Publishing : , : Imprint : Springer, , 2020 |
Descrizione fisica | 1 online resource (X, 563 p. 307 illus.) |
Disciplina | 530.12 |
Soggetto topico |
Quantum physics
Continuum physics Mathematical physics Nuclear physics Statistical physics Quantum Physics Classical and Continuum Physics Mathematical Applications in the Physical Sciences Particle and Nuclear Physics Statistical Physics and Dynamical Systems |
ISBN | 3-030-36786-X |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | Introduction -- The Action Principles in Mechanics -- The Action Principle in Classical Electrodynamics -- Application of the Action Principles -- Jacobi Fields, Conjugate Points.-Canonical Transformations -- The Hamilton–Jacobi Equation -- Action-Angle Variables -- The Adiabatic Invariance of the Action Variables -- Time-Independent Canonical Perturbation Theory -- Canonical Perturbation Theory with Several Degrees of Freedom -- Canonical Adiabatic Theory -- Removal of Resonances -- Superconvergent Perturbation Theory, KAM Theorem -- Poincaré Surface of Sections, Mappings -- The KAM Theorem -- Fundamental Principles of Quantum Mechanics -- Functional Derivative Approach -- Examples for Calculating Path Integrals -- Direct Evaluation of Path Integrals -- Linear Oscillator with Time-Dependent Frequency -- Propagators for Particles in an External Magnetic Field -- Simple Applications of Propagator Functions -- The WKB Approximation -- Computing the trace -- Partition Function for the Harmonic Oscillator -- Introduction to Homotopy Theory -- Classical Chern–Simons Mechanics -- Semiclassical Quantization -- The “Maslov Anomaly” for the Harmonic Oscillator.-Maslov Anomaly and the Morse Index Theorem -- Berry’s Phase -- Classical Geometric Phases: Foucault and Euler -- Berry Phase and Parametric Harmonic Oscillator -- Topological Phases in Planar Electrodynamics -- Path Integral Formulation of Quantum Electrodynamics -- Particle in Harmonic E-Field E(t) = Esinw0t; Schwinger-Fock Proper-Time Method -- The Usefulness of Lie Brackets: From Classical and Quantum Mechanics to Quantum Electrodynamics -- Green’s Function of a Spin-1/2 Particle in a Constant External Magnetic Field -- One-Loop Effective Lagrangian in QED -- On Riemann’s Ideas on Space and Schwinger’s Treatment of Low-Energy Pion-Nucleon Physics -- The Non-Abelian Vector Gauge Particle p -- Riemann’s Result and Consequences for Physics and Philosophy. |
Record Nr. | UNISA-996418172303316 |
Dittrich Walter
![]() |
||
Cham : , : Springer International Publishing : , : Imprint : Springer, , 2020 | ||
![]() | ||
Lo trovi qui: Univ. di Salerno | ||
|
Classical and Quantum Dynamics : From Classical Paths to Path Integrals / / by Walter Dittrich, Martin Reuter |
Autore | Dittrich Walter |
Edizione | [6th ed. 2020.] |
Pubbl/distr/stampa | Cham : , : Springer International Publishing : , : Imprint : Springer, , 2020 |
Descrizione fisica | 1 online resource (X, 563 p. 307 illus.) |
Disciplina | 530.12 |
Soggetto topico |
Quantum theory
Field theory (Physics) Mathematical physics Nuclear physics Statistical physics Quantum Physics Classical and Continuum Physics Mathematical Applications in the Physical Sciences Particle and Nuclear Physics Statistical Physics and Dynamical Systems |
ISBN | 3-030-36786-X |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | Introduction -- The Action Principles in Mechanics -- The Action Principle in Classical Electrodynamics -- Application of the Action Principles -- Jacobi Fields, Conjugate Points.-Canonical Transformations -- The Hamilton–Jacobi Equation -- Action-Angle Variables -- The Adiabatic Invariance of the Action Variables -- Time-Independent Canonical Perturbation Theory -- Canonical Perturbation Theory with Several Degrees of Freedom -- Canonical Adiabatic Theory -- Removal of Resonances -- Superconvergent Perturbation Theory, KAM Theorem -- Poincaré Surface of Sections, Mappings -- The KAM Theorem -- Fundamental Principles of Quantum Mechanics -- Functional Derivative Approach -- Examples for Calculating Path Integrals -- Direct Evaluation of Path Integrals -- Linear Oscillator with Time-Dependent Frequency -- Propagators for Particles in an External Magnetic Field -- Simple Applications of Propagator Functions -- The WKB Approximation -- Computing the trace -- Partition Function for the Harmonic Oscillator -- Introduction to Homotopy Theory -- Classical Chern–Simons Mechanics -- Semiclassical Quantization -- The “Maslov Anomaly” for the Harmonic Oscillator.-Maslov Anomaly and the Morse Index Theorem -- Berry’s Phase -- Classical Geometric Phases: Foucault and Euler -- Berry Phase and Parametric Harmonic Oscillator -- Topological Phases in Planar Electrodynamics -- Path Integral Formulation of Quantum Electrodynamics -- Particle in Harmonic E-Field E(t) = Esinw0t; Schwinger-Fock Proper-Time Method -- The Usefulness of Lie Brackets: From Classical and Quantum Mechanics to Quantum Electrodynamics -- Green’s Function of a Spin-1/2 Particle in a Constant External Magnetic Field -- One-Loop Effective Lagrangian in QED -- On Riemann’s Ideas on Space and Schwinger’s Treatment of Low-Energy Pion-Nucleon Physics -- The Non-Abelian Vector Gauge Particle p -- Riemann’s Result and Consequences for Physics and Philosophy. |
Record Nr. | UNINA-9910380736203321 |
Dittrich Walter
![]() |
||
Cham : , : Springer International Publishing : , : Imprint : Springer, , 2020 | ||
![]() | ||
Lo trovi qui: Univ. Federico II | ||
|
Classical and Quantum Dynamics : From Classical Paths to Path Integrals / / by Walter Dittrich, Martin Reuter |
Autore | Dittrich Walter |
Edizione | [5th ed. 2017.] |
Pubbl/distr/stampa | Cham : , : Springer International Publishing : , : Imprint : Springer, , 2017 |
Descrizione fisica | 1 online resource (XVI, 489 p. 18 illus.) |
Disciplina | 530.12 |
Soggetto topico |
Quantum physics
Continuum physics Mathematical physics Nuclear physics Quantum Physics Classical and Continuum Physics Mathematical Applications in the Physical Sciences Particle and Nuclear Physics |
ISBN | 3-319-58298-4 |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | Introduction -- The Action Principles in Mechanics -- The Action Principle in Classical Electrodynamics -- Application of the Action Principles -- Jacobi Fields, Conjugate Points.-Canonical Transformations -- The Hamilton–Jacobi Equation -- Action-Angle Variables -- The Adiabatic Invariance of the Action Variables -- Time-Independent Canonical Perturbation Theory -- Canonical Perturbation Theory with Several Degrees of Freedom -- Canonical Adiabatic Theory -- Removal of Resonances -- Superconvergent Perturbation Theory, KAM Theorem -- Poincaré Surface of Sections, Mappings -- The KAM Theorem -- Fundamental Principles of Quantum Mechanics -- Functional Derivative Approach -- Examples for Calculating Path Integrals -- Direct Evaluation of Path Integrals -- Linear Oscillator with Time-Dependent Frequency -- Propagators for Particles in an External Magnetic Field -- Simple Applications of Propagator Functions -- The WKB Approximation -- Computing the trace -- Partition Function for the Harmonic Oscillator -- Introduction to Homotopy Theory -- Classical Chern–Simons Mechanics -- Semiclassical Quantization -- The “Maslov Anomaly” for the Harmonic Oscillator.-Maslov Anomaly and the Morse Index Theorem -- Berry’s Phase -- Classical Geometric Phases: Foucault and Euler -- Berry Phase and Parametric Harmonic Oscillator -- Topological Phases in Planar Electrodynamics -- Path Integral Formulation of Quantum Electrodynamics -- Particle in Harmonic E-Field E(t) = Esinw0t; Schwinger-Fock Proper-Time Method -- The Usefulness of Lie Brackets: From Classical and Quantum Mechanics to Quantum Electrodynamics -- Appendix -- Solutions -- Index. |
Record Nr. | UNINA-9910254578103321 |
Dittrich Walter
![]() |
||
Cham : , : Springer International Publishing : , : Imprint : Springer, , 2017 | ||
![]() | ||
Lo trovi qui: Univ. Federico II | ||
|
Classical and Quantum Dynamics : From Classical Paths to Path Integrals / / by Walter Dittrich, Martin Reuter |
Autore | Dittrich Walter |
Edizione | [4th ed. 2016.] |
Pubbl/distr/stampa | Cham : , : Springer International Publishing : , : Imprint : Springer, , 2016 |
Descrizione fisica | 1 online resource (XII, 461 p. 2 illus.) |
Disciplina | 530.12 |
Collana | Graduate Texts in Physics |
Soggetto topico |
Quantum physics
Continuum physics Mathematical physics Nuclear physics Quantum Physics Classical and Continuum Physics Mathematical Applications in the Physical Sciences Particle and Nuclear Physics |
ISBN | 3-319-21677-5 |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | Introduction -- The Action Principles in Mechanics -- The Action Principle in Classical Electrodynamics -- Application of the Action Principles -- Jacobi Fields, Conjugate Points.-Canonical Transformations -- The Hamilton–Jacobi Equation -- Action-Angle Variables -- The Adiabatic Invariance of the Action Variables -- Time-Independent Canonical Perturbation Theory -- Canonical Perturbation Theory with Several Degrees of Freedom -- Canonical Adiabatic Theory -- Removal of Resonances -- Superconvergent Perturbation Theory, KAM Theorem -- Poincaré Surface of Sections, Mappings -- The KAM Theorem -- Fundamental Principles of Quantum Mechanics -- Functional Derivative Approach -- Examples for Calculating Path Integrals -- Direct Evaluation of Path Integrals -- Linear Oscillator with Time-Dependent Frequency -- Propagators for Particles in an External Magnetic Field -- Simple Applications of Propagator Functions -- The WKB Approximation -- Computing the trace -- Partition Function for the Harmonic Oscillator -- Introduction to Homotopy Theory -- Classical Chern–Simons Mechanics -- Semiclassical Quantization -- The “Maslov Anomaly” for the Harmonic Oscillator.-Maslov Anomaly and the Morse Index Theorem -- Berry’s Phase -- Classical Analogues to Berry’s Phase -- Berry Phase and Parametric Harmonic Oscillator -- Topological Phases in Planar Electrodynamics -- Appendix -- Solutions -- Index. |
Record Nr. | UNINA-9910254605103321 |
Dittrich Walter
![]() |
||
Cham : , : Springer International Publishing : , : Imprint : Springer, , 2016 | ||
![]() | ||
Lo trovi qui: Univ. Federico II | ||
|
The development of the action principle : a didactic history from Euler-Lagrange to Schwinger / / Walter Dittrich |
Autore | Dittrich Walter |
Pubbl/distr/stampa | Cham, Switzerland : , : Springer, , [2021] |
Descrizione fisica | 1 online resource (141 pages) |
Disciplina | 530.1209 |
Collana | SpringerBriefs in Physics |
Soggetto topico |
Quantum theory - History
Schwinger action principle Quantum theory |
ISBN | 3-030-69105-5 |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Record Nr. | UNISA-996466737403316 |
Dittrich Walter
![]() |
||
Cham, Switzerland : , : Springer, , [2021] | ||
![]() | ||
Lo trovi qui: Univ. di Salerno | ||
|
The Development of the Action Principle : A Didactic History from Euler-Lagrange to Schwinger / / by Walter Dittrich |
Autore | Dittrich Walter |
Edizione | [1st ed. 2021.] |
Pubbl/distr/stampa | Cham : , : Springer International Publishing : , : Imprint : Springer, , 2021 |
Descrizione fisica | 1 online resource (141 pages) |
Disciplina | 530.1209 |
Collana | SpringerBriefs in Physics |
Soggetto topico |
Mechanics
Physics—History Mathematical physics Elementary particles (Physics) Quantum field theory Physics—Philosophy Classical Mechanics History of Physics and Astronomy Mathematical Physics Elementary Particles, Quantum Field Theory Philosophical Foundations of Physics and Astronomy |
ISBN | 3-030-69105-5 |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | Short Historical Introduction -- Curva Elastica -- The Curva Elastica, a Curve of Least Energy -- From Euler to Lagrange -- Laplace and the Capillary - 1807 -- A Final Application in Elasticity with Jacobi Elliptic Functions -- Short List of Jacobi Elliptic Functions and Constants Used in Chapter 5 -- Variational Methods for Periodic Motions; Mathieu Functions -- Lagrangian for Isentropic Irrotational Flow -- Action Principle in Classical Electrodynamics -- The Two Giants in Gravity: Einstein and Hilbert -- The Quantum Action Principle -- The Action Principle in Quantum Field Theory -- Quantum Field Theory on Space-Like Hypersurfaces -- Lagrangian Formulation of Gauge Theories -- Effective Actions (Lagrangians) in Quantum Field Theory -- Modified Photon Propagation Function, Source Theory. |
Record Nr. | UNINA-9910739464403321 |
Dittrich Walter
![]() |
||
Cham : , : Springer International Publishing : , : Imprint : Springer, , 2021 | ||
![]() | ||
Lo trovi qui: Univ. Federico II | ||
|
Reassessing Riemann's paper : on the number of primes less than a given magnitude / / Walter Dittrich |
Autore | Dittrich Walter |
Edizione | [Second edition.] |
Pubbl/distr/stampa | Cham, Switzerland : , : Springer, , [2018] |
Descrizione fisica | 1 online resource (XI, 107 p. 18 illus., 10 illus. in color.) |
Disciplina | 512.7 |
Collana | SpringerBriefs in History of Science and Technology |
Soggetto topico | Number theory |
ISBN | 3-030-61049-7 |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | Preface -- Introduction -- Short Biography of Bernhard Riemann (1826 – 1866) -- Towards Euler's Product Formula and Riemann’s Extension of the Zeta Function -- Prime Power Number Counting Function -- Riemann as an Expert in Fourier Transforms -- On the Way to Riemann’s Entire Function ζ(s) -- The Product Representation of ξ(s) and ζ(s) by Riemann (1859) -- Derivation of Von Mangoldt’s Formula for ψ(x) -- The Number of Roots in the Critical Strip -- Riemann’s Zeta Function Regularization -- ζ-Function Regularization of the Partition Function of the Harmonic Oscillator -- ζ-Function Regularization of the Partition Function of the Fermi Oscillator -- The Zeta-Function in Quantum Electrodynamics (QED) -- Summary of Euler-Riemann Formulae -- Appendix. |
Record Nr. | UNINA-9910483767303321 |
Dittrich Walter
![]() |
||
Cham, Switzerland : , : Springer, , [2018] | ||
![]() | ||
Lo trovi qui: Univ. Federico II | ||
|
Reassessing Riemann's paper : on the number of primes less than a given magnitude / / Walter Dittrich |
Autore | Dittrich Walter |
Edizione | [Second edition.] |
Pubbl/distr/stampa | Cham, Switzerland : , : Springer, , [2018] |
Descrizione fisica | 1 online resource (XI, 107 p. 18 illus., 10 illus. in color.) |
Disciplina | 512.7 |
Collana | SpringerBriefs in History of Science and Technology |
Soggetto topico | Number theory |
ISBN | 3-030-61049-7 |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | Preface -- Introduction -- Short Biography of Bernhard Riemann (1826 – 1866) -- Towards Euler's Product Formula and Riemann’s Extension of the Zeta Function -- Prime Power Number Counting Function -- Riemann as an Expert in Fourier Transforms -- On the Way to Riemann’s Entire Function ζ(s) -- The Product Representation of ξ(s) and ζ(s) by Riemann (1859) -- Derivation of Von Mangoldt’s Formula for ψ(x) -- The Number of Roots in the Critical Strip -- Riemann’s Zeta Function Regularization -- ζ-Function Regularization of the Partition Function of the Harmonic Oscillator -- ζ-Function Regularization of the Partition Function of the Fermi Oscillator -- The Zeta-Function in Quantum Electrodynamics (QED) -- Summary of Euler-Riemann Formulae -- Appendix. |
Record Nr. | UNISA-996466409103316 |
Dittrich Walter
![]() |
||
Cham, Switzerland : , : Springer, , [2018] | ||
![]() | ||
Lo trovi qui: Univ. di Salerno | ||
|
Reassessing Riemann's Paper : On the Number of Primes Less Than a Given Magnitude / / by Walter Dittrich |
Autore | Dittrich Walter |
Edizione | [1st ed. 2018.] |
Pubbl/distr/stampa | Cham : , : Springer International Publishing : , : Imprint : Springer, , 2018 |
Descrizione fisica | 1 online resource (XIX, 65 p. 4 illus.) |
Disciplina | 510.9 |
Collana | SpringerBriefs in History of Science and Technology |
Soggetto topico |
Mathematics
History Number theory Quantum field theory String theory History of Mathematical Sciences Number Theory Quantum Field Theories, String Theory |
ISBN | 3-319-91482-0 |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | Preface -- Introduction -- Short Biography of Bernhard Riemann (1826 – 1866) -- Towards Euler's Product Formula and Riemann’s Extension of the Zeta Function -- Prime Power Number Counting Function -- Riemann as an Expert in Fourier Transforms -- On the Way to Riemann’s Entire Function ζ(s) -- The Product Representation of ξ(s) and ζ(s) by Riemann (1859) -- Derivation of Von Mangoldt’s Formula for ψ(x) -- The Number of Roots in the Critical Strip -- Riemann’s Zeta Function Regularization -- Supplements -- Appendix. |
Record Nr. | UNINA-9910300127203321 |
Dittrich Walter
![]() |
||
Cham : , : Springer International Publishing : , : Imprint : Springer, , 2018 | ||
![]() | ||
Lo trovi qui: Univ. Federico II | ||
|
Selected Topics in Gauge Theories [[electronic resource] /] / by Walter Dittrich, Martin Reuter |
Autore | Dittrich Walter |
Edizione | [1st ed. 1986.] |
Pubbl/distr/stampa | Berlin, Heidelberg : , : Springer Berlin Heidelberg : , : Imprint : Springer, , 1986 |
Descrizione fisica | 1 online resource (V, 319 p. 1 illus.) |
Disciplina | 539.72 |
Collana | Lecture Notes in Physics |
Soggetto topico |
Elementary particles (Physics)
Quantum field theory Mathematical physics Elementary Particles, Quantum Field Theory Theoretical, Mathematical and Computational Physics |
ISBN | 3-540-39746-9 |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | Classical Yang-mills theory -- Path integral quantization of gauge theories -- Background field methods -- Instantons and ?-Vacua -- Schwinger model (QED)2 -- Chiral anomaly in (QCD)2 -- Fujikawa's path integral method -- Chiral anomaly in the Schwinger-Symanzik formalism -- Anomalous ward identities à la Wess-Zumino -- Topological aspects of the Wess-Zumino effective action -- Topological baryon number and the Skyrme model -- The Atiyah-Singer index theorem (for the Euclidean Dirac operator) -- Chiral anomalies and differential geometry -- Effective gauge theory actions in (2n + 1) dimensions -- Chiral anomaly with gravitational background field -- Vacuum charge in 2n + 1 dimensions. |
Record Nr. | UNINA-9910257439903321 |
Dittrich Walter
![]() |
||
Berlin, Heidelberg : , : Springer Berlin Heidelberg : , : Imprint : Springer, , 1986 | ||
![]() | ||
Lo trovi qui: Univ. Federico II | ||
|