top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Machine Learning and Medical Engineering for Cardiovascular Health and Intravascular Imaging and Computer Assisted Stenting [[electronic resource] ] : First International Workshop, MLMECH 2019, and 8th Joint International Workshop, CVII-STENT 2019, Held in Conjunction with MICCAI 2019, Shenzhen, China, October 13, 2019, Proceedings / / edited by Hongen Liao, Simone Balocco, Guijin Wang, Feng Zhang, Yongpan Liu, Zijian Ding, Luc Duong, Renzo Phellan, Guillaume Zahnd, Katharina Breininger, Shadi Albarqouni, Stefano Moriconi, Su-Lin Lee, Stefanie Demirci
Machine Learning and Medical Engineering for Cardiovascular Health and Intravascular Imaging and Computer Assisted Stenting [[electronic resource] ] : First International Workshop, MLMECH 2019, and 8th Joint International Workshop, CVII-STENT 2019, Held in Conjunction with MICCAI 2019, Shenzhen, China, October 13, 2019, Proceedings / / edited by Hongen Liao, Simone Balocco, Guijin Wang, Feng Zhang, Yongpan Liu, Zijian Ding, Luc Duong, Renzo Phellan, Guillaume Zahnd, Katharina Breininger, Shadi Albarqouni, Stefano Moriconi, Su-Lin Lee, Stefanie Demirci
Edizione [1st ed. 2019.]
Pubbl/distr/stampa Cham : , : Springer International Publishing : , : Imprint : Springer, , 2019
Descrizione fisica 1 online resource (XVII, 212 p. 83 illus., 68 illus. in color.)
Disciplina 610.285
Collana Image Processing, Computer Vision, Pattern Recognition, and Graphics
Soggetto topico Optical data processing
Artificial intelligence
Image Processing and Computer Vision
Artificial Intelligence
ISBN 3-030-33327-2
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Proceedings of the Machine Learning and Medical Engineering for Cardiovascular Health, MLMECH 2019 -- Arrhythmia Classification with Attention-Based ResBiLSTM-Net -- A Multi-Label Learning Method to detect Arrhythmia Based on -- An Ensemble Neural Network for Multi-label Classification of Electrocardiogram -- Automatic Diagnosis with 12-lead ECG Signals -- Diagnosing Cardiac Abnormalities from 12-Lead Electrocardiograms Using Enhanced Deep Convolutional Neural Networks -- Transfer Learning for Electrocardiogram Classification under Small Dataset -- Multi-label classification of abnormalities in 12-lead ECG using 1D CNN and LSTM -- An Approach to Predict Multiple Cardiac Diseases -- A 12-lead ECG Arrhythmia Classification Method Based on 1D Densely Connected CNN -- Automatic Multi-label Classification in 12-lead ECGs Using Neural Networks and Characteristic Points -- Automatic Detection of ECG Abnormalities by using an Ensemble of Deep Residual Networks with Attention -- Deep Learning to Improve Heart Disease Risk Prediction -- LabelECG: A Web-based Tool for Distributed Electrocardiogram Annotation -- Particle Swarm Optimization for Great Enhancement in Semi-Supervised Retinal Vessel Segmentation with Generative Adversarial Networks -- Attention-Guided Decoder in Dilated Residual Network for Accurate Aortic Valve Segmentation in 3D CT Scans -- ARVBNet: Real-time Detection of Anatomical Structures in Fetal Ultrasound Cardiac Four-chamber Planes -- Proceedings of the Computing and Visualization for Intravascular Imaging and Computer Assisted Stenting, CVII-STENT 2019 -- The Effect of Labeling Duration and Temporal Resolution on Arterial Transit Time Estimation Accuracy in 4D ASL MRA Datasets - a Flow Phantom Study -- Towards Quantifying Neurovascular Resilience -- Random 2.5D U-net for Fully 3D Segmentation -- Abdominal aortic aneurysm segmentation using convolutional neural networks trained with images generated with a synthetic shape model -- Tracking of intracavitary instrument markers in coronary angiography images -- Healthy Vessel Wall Detection Using U-Net in Optical Coherence Tomography -- Advanced Multi-objective Design Analysis to Identify Ideal Stent Design -- Simultaneous Intracranial Artery Tracing and Segmentation from Magnetic Resonance Angiography by Joint Optimization from Multiplanar Reformation.
Record Nr. UNISA-996466194903316
Cham : , : Springer International Publishing : , : Imprint : Springer, , 2019
Materiale a stampa
Lo trovi qui: Univ. di Salerno
Opac: Controlla la disponibilità qui
Machine Learning and Medical Engineering for Cardiovascular Health and Intravascular Imaging and Computer Assisted Stenting : First International Workshop, MLMECH 2019, and 8th Joint International Workshop, CVII-STENT 2019, Held in Conjunction with MICCAI 2019, Shenzhen, China, October 13, 2019, Proceedings / / edited by Hongen Liao, Simone Balocco, Guijin Wang, Feng Zhang, Yongpan Liu, Zijian Ding, Luc Duong, Renzo Phellan, Guillaume Zahnd, Katharina Breininger, Shadi Albarqouni, Stefano Moriconi, Su-Lin Lee, Stefanie Demirci
Machine Learning and Medical Engineering for Cardiovascular Health and Intravascular Imaging and Computer Assisted Stenting : First International Workshop, MLMECH 2019, and 8th Joint International Workshop, CVII-STENT 2019, Held in Conjunction with MICCAI 2019, Shenzhen, China, October 13, 2019, Proceedings / / edited by Hongen Liao, Simone Balocco, Guijin Wang, Feng Zhang, Yongpan Liu, Zijian Ding, Luc Duong, Renzo Phellan, Guillaume Zahnd, Katharina Breininger, Shadi Albarqouni, Stefano Moriconi, Su-Lin Lee, Stefanie Demirci
Edizione [1st ed. 2019.]
Pubbl/distr/stampa Cham : , : Springer International Publishing : , : Imprint : Springer, , 2019
Descrizione fisica 1 online resource (XVII, 212 p. 83 illus., 68 illus. in color.)
Disciplina 610.285
Collana Image Processing, Computer Vision, Pattern Recognition, and Graphics
Soggetto topico Optical data processing
Artificial intelligence
Image Processing and Computer Vision
Artificial Intelligence
ISBN 3-030-33327-2
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Proceedings of the Machine Learning and Medical Engineering for Cardiovascular Health, MLMECH 2019 -- Arrhythmia Classification with Attention-Based ResBiLSTM-Net -- A Multi-Label Learning Method to detect Arrhythmia Based on -- An Ensemble Neural Network for Multi-label Classification of Electrocardiogram -- Automatic Diagnosis with 12-lead ECG Signals -- Diagnosing Cardiac Abnormalities from 12-Lead Electrocardiograms Using Enhanced Deep Convolutional Neural Networks -- Transfer Learning for Electrocardiogram Classification under Small Dataset -- Multi-label classification of abnormalities in 12-lead ECG using 1D CNN and LSTM -- An Approach to Predict Multiple Cardiac Diseases -- A 12-lead ECG Arrhythmia Classification Method Based on 1D Densely Connected CNN -- Automatic Multi-label Classification in 12-lead ECGs Using Neural Networks and Characteristic Points -- Automatic Detection of ECG Abnormalities by using an Ensemble of Deep Residual Networks with Attention -- Deep Learning to Improve Heart Disease Risk Prediction -- LabelECG: A Web-based Tool for Distributed Electrocardiogram Annotation -- Particle Swarm Optimization for Great Enhancement in Semi-Supervised Retinal Vessel Segmentation with Generative Adversarial Networks -- Attention-Guided Decoder in Dilated Residual Network for Accurate Aortic Valve Segmentation in 3D CT Scans -- ARVBNet: Real-time Detection of Anatomical Structures in Fetal Ultrasound Cardiac Four-chamber Planes -- Proceedings of the Computing and Visualization for Intravascular Imaging and Computer Assisted Stenting, CVII-STENT 2019 -- The Effect of Labeling Duration and Temporal Resolution on Arterial Transit Time Estimation Accuracy in 4D ASL MRA Datasets - a Flow Phantom Study -- Towards Quantifying Neurovascular Resilience -- Random 2.5D U-net for Fully 3D Segmentation -- Abdominal aortic aneurysm segmentation using convolutional neural networks trained with images generated with a synthetic shape model -- Tracking of intracavitary instrument markers in coronary angiography images -- Healthy Vessel Wall Detection Using U-Net in Optical Coherence Tomography -- Advanced Multi-objective Design Analysis to Identify Ideal Stent Design -- Simultaneous Intracranial Artery Tracing and Segmentation from Magnetic Resonance Angiography by Joint Optimization from Multiplanar Reformation.
Record Nr. UNINA-9910349274303321
Cham : , : Springer International Publishing : , : Imprint : Springer, , 2019
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui