top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Graph Neural Network for Feature Extraction and Classification of Hyperspectral Remote Sensing Images / / by Yao Ding, Zhili Zhang, Haojie Hu, Fang He, Shuli Cheng, Yijun Zhang
Graph Neural Network for Feature Extraction and Classification of Hyperspectral Remote Sensing Images / / by Yao Ding, Zhili Zhang, Haojie Hu, Fang He, Shuli Cheng, Yijun Zhang
Autore Ding Yao
Edizione [1st ed. 2024.]
Pubbl/distr/stampa Singapore : , : Springer Nature Singapore : , : Imprint : Springer, , 2024
Descrizione fisica 1 online resource (189 pages)
Disciplina 621.382
Altri autori (Persone) ZhangZhili
HuHaojie
HeFang
ChengShuli
ZhangYijun
Collana Intelligent Perception and Information Processing
Soggetto topico Image processing
Neural networks (Computer science)
Machine learning
Image Processing
Mathematical Models of Cognitive Processes and Neural Networks
Machine Learning
ISBN 9789819780099
9819780098
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Introduction -- Graph sample and aggregate-attention network for hyperspectral image classification -- Multi-feature fusion: Graph neural network and CNN combining for hyperspectral image classification -- Pixel and hyperpixel level feature combining for hyperspectral image classification -- Global dynamic graph optimization for hyperspectral image classification -- Exploring relationship between transformer and graph convolution for hyperspectral image classification.
Record Nr. UNINA-9910910493103321
Ding Yao  
Singapore : , : Springer Nature Singapore : , : Imprint : Springer, , 2024
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Graph Neural Network for Hyperspectral Image Clustering / / by Yao Ding, Zhili Zhang, Haojie Hu, Renxiang Guan, Jie Feng, Zhiyong Lv
Graph Neural Network for Hyperspectral Image Clustering / / by Yao Ding, Zhili Zhang, Haojie Hu, Renxiang Guan, Jie Feng, Zhiyong Lv
Autore Ding Yao
Edizione [1st ed. 2025.]
Pubbl/distr/stampa Singapore : , : Springer Nature Singapore : , : Imprint : Springer, , 2025
Descrizione fisica 1 online resource (259 pages)
Disciplina 621.382
Altri autori (Persone) ZhangZhili
HuHaojie
GuanRenxiang
FengJie
LvZhiyong
Collana Intelligent Perception and Information Processing
Soggetto topico Image processing
Medicine - Research
Biology - Research
Neural networks (Computer science)
Machine learning
Image Processing
Biomedical Research
Mathematical Models of Cognitive Processes and Neural Networks
Machine Learning
ISBN 981-9677-10-6
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Introduction -- Self-supervised Efficient Low-pass Contrastive Graph Clustering for Hyperspectral Images -- Self-Supervised Locality Preserving Low-Pass Graph Convolutional Embedding for Large-Scale Hyperspectral Image Clustering -- Adaptive Homophily Clustering: A Structure Homophily Graph Learning with Adaptive Filter for Hyperspectral Image -- Pixel-superpixel Contrastive Learning And Pseudo-label correction For Hyperspectral Image Clustering -- Contrastive Multiview Subspace Clustering of Hyperspectral Images Based on Graph Convolutional Networks.
Record Nr. UNINA-9911020416403321
Ding Yao  
Singapore : , : Springer Nature Singapore : , : Imprint : Springer, , 2025
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui