top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Instrumentation and measurement technologies for water cycle management / / Anna Di Mauro, Andrea Scozzari, Francesco Soldovieri, editors
Instrumentation and measurement technologies for water cycle management / / Anna Di Mauro, Andrea Scozzari, Francesco Soldovieri, editors
Pubbl/distr/stampa Cham, Switzerland : , : Springer, , [2022]
Descrizione fisica 1 online resource (598 pages)
Disciplina 333.91
Collana Springer water
Soggetto topico Water-supply - Management
Water-supply engineering
ISBN 3-031-08262-1
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Intro -- Acknowledgements -- Contents -- 1 Preface -- References -- 2 Regional Adaptation of Water Quality Algorithms for Monitoring Inland Waters: Case Study from Irish Lakes -- 2.1 Introduction -- 2.1.1 Need for Remote Sensing Technologies -- 2.1.2 Water Quality Monitoring in Ireland -- 2.2 Methods -- 2.2.1 Field Sampling -- 2.2.2 Sentinel-2 Imagery Collection -- 2.2.3 Field Radiometry -- 2.3 Results and Discussions -- 2.3.1 Atmospheric Correction -- 2.3.2 Water Quality Parameters Validation -- 2.3.3 Coupling of C2RCC and Acolite -- 2.3.4 EO Platform for Monitoring Water Quality -- 2.4 Conclusions -- References -- 3 Optical Remote Sensing in Lake Trasimeno: Understanding from Applications Across Diverse Temporal, Spectral and Spatial Scales -- 3.1 Introduction -- 3.2 Study Area -- 3.3 High Frequency Spectroradiometric Measurements -- 3.4 Long Term EO Data-Set -- 3.5 Spaceborne Imaging Spectrometry -- 3.6 High Spatial Resolution Products -- 3.7 Conclusions -- References -- 4 Satellite Instrumentation and Technique for Oil Pollution Monitoring of the Seas -- 4.1 Introduction -- 4.2 Physical Principles and Methods of Oil Spill Detection -- 4.3 Satellites and Sensors -- 4.4 Examples of Oil Spill Pollution -- 4.5 Discussion -- 4.6 Conclusions -- References -- 5 Satellite Instrumentation and Technique for Monitoring of Seawater Quality -- 5.1 Introduction -- 5.2 Physical Principles and Methods of Remote Sensing of Seawater Quality -- 5.3 Satellites and Sensors -- 5.4 Examples of Oil Spill Pollution, Turbid Waters and Algae Bloom -- 5.4.1 Oil Pollution -- 5.4.2 Turbid Waters -- 5.4.3 Algae Bloom -- 5.5 Conclusions -- References -- 6 Inland Water Altimetry: Technological Progress and Applications -- 6.1 Introduction -- 6.2 Radar and Laser Altimetry -- 6.2.1 Altimetry, the Principle and the Missions.
6.2.2 Limitations, Accuracy, and Current Improved Algorithms -- 6.3 Applications of Satellite Altimetry -- 6.3.1 Lake Studies Using Satellite Altimetry -- 6.3.2 Reservoir and Transboundary Water Monitoring Using Satellite Altimetry -- 6.3.3 Water Level Over Rivers and Applications for Ungauged Basin -- 6.4 Conclusion -- References -- 7 Generic Strategy for Consistency Validation of the Satellite-, In-Situ-, and Reanalysis-Based Climate Data Records (CDRs) Essential Climate Variables (ECVs) -- 7.1 Consistency Validation Requirements and Capacities -- 7.1.1 Consistency Validation Requirements -- 7.1.2 Consistency Validation Capacities -- 7.2 Case Study: Consistency Among Hydrological Cycle Variables -- 7.3 Essentials of Current Practices and Strategy for Future Work -- 7.3.1 Essentials of Consistency Validation for Current Practice Examples -- 7.3.2 Generic Strategy of Consistency Validation -- 7.4 Discussion and Conclusions -- References -- 8 Optical Spectroscopy for on Line Water Monitoring -- 8.1 Introduction -- 8.1.1 Absorption Spectroscopy -- 8.1.2 Light Scattering Methods -- 8.1.3 Fluorescence Spectroscopy -- 8.1.4 Raman Spectroscopy -- 8.2 Conclusions -- References -- 9 Fiber Optic Technology for Environmental Monitoring: State of the Art and Application in the Observatory of Transfers in the Vadose Zone-(O-ZNS) -- 9.1 Introduction -- 9.2 Fiber Optic Technology: State of the Art and Environmental Applications -- 9.2.1 Fiber Bragg Grating Sensors: Point Measurements -- 9.2.2 Distributed FO Sensors: Continuously Sensitive -- 9.2.3 Distributed Sensors Performance in the Environmental Application -- 9.2.4 Chalcogenide FO Sensors -- 9.3 O-ZNS Project: Main Objectives, First Results and Instrumentation Strategy -- 9.3.1 The Beauce Limestone Aquifer -- 9.3.2 The Objectives of the O-ZNS Project.
9.3.3 Preliminary Investigations Made Within the Framework of O-ZNS Project -- 9.3.4 Instrumentation Strategy of the O-ZNS Project -- 9.4 Installation of FO Sensors on the O-ZNS Experimental Site -- 9.5 Conclusion -- References -- 10 Plants, Vital Players in the Terrestrial Water Cycle -- 10.1 Introduction -- 10.1.1 Terrestrial Water Cycle and the Role of Transpiration -- 10.1.2 Water Movement in the Plant -- 10.1.3 Root-Soil Water Exchange -- 10.1.4 Stomata -- 10.1.5 Atmosphere and Soil Effects on Transpiration -- 10.1.6 Measuring Plant Water Relations: Where and How -- 10.2 Measuring Techniques for Stomatal Conductance and Water-Vapor Exchange at the Leaf Atmosphere Interface -- 10.2.1 Microscopy -- 10.2.2 Gas Exchange Measurements -- 10.2.3 Scintillometry and Eddy Covariance -- 10.3 Measuring Techniques of Water Status and Transpiration from Leaf to Canopy Scale -- 10.3.1 Thermometry -- 10.3.2 Optical Measurements -- 10.3.3 Microwave Measurements -- 10.4 Measuring Techniques of Plant Water Dynamics -- 10.4.1 Transpiration Measurements via Sap Flow Dynamics -- 10.4.2 Dendrometry -- 10.4.3 Lysimetry -- 10.4.4 Stable Water Isotopes Measurements -- 10.5 Novel Approaches to Plant Water Status Measurements -- 10.5.1 Acoustic Measurements of Leaf and Plant Water Status -- 10.5.2 Accelerometry -- 10.6 Outlook -- References -- 11 Improving Water Quality and Security with Advanced Sensors and Indirect Water Sensing Methods -- 11.1 Issues and Challenges on Water Sensing -- 11.1.1 Guaranteeing the Sustainability of Its Water Cycle Is Essential to European Resilience -- 11.2 New Sensing Techniques Developed for Water Security -- 11.2.1 Introduction of Aqua3S -- 11.2.2 Sensor-Based Techniques -- 11.2.3 Complementing Direct Sensing by Indirect Techniques -- 11.3 Low-Cost Multiparameter Water Quality Monitoring Through Nanomaterials.
11.3.1 Monitoring Matrix Composition: A Challenge of In-situ Water Quality Monitoring -- 11.3.2 Carbon Nanotube-Based Multiparameter Water Quality Sensing: A Solution? -- 11.3.3 Success at Prototype Level -- 11.3.4 Reaching Pre-industrial Series for Field Deployments -- 11.4 Conclusions and Future Work -- References -- 12 Sensor Web and Internet of Things Technologies for Hydrological Measurement Data -- 12.1 Introduction -- 12.2 Relevant Standards and Technologies -- 12.2.1 Sensor Web Standards -- 12.2.2 Internet of Things Technologies -- 12.3 Technical Challenges for Efficient Water Monitoring -- 12.3.1 Collecting Sensor Data Streams -- 12.3.2 Data Management -- 12.3.3 Lightweight Deployment -- 12.3.4 Data Harmonization -- 12.3.5 Semantic Interoperability -- 12.4 Concept for a Sensor Web Based Water Monitoring System -- 12.5 Deployment and Evaluation at the Wupperverband -- 12.6 Future Challenges -- References -- 13 Smart Sensors for Smart Waters -- 13.1 Introduction -- 13.1.1 The Historical View -- 13.1.2 Why Measure Water Quality Online-The Drivers -- 13.1.3 Why Norms and Standards Are so Important for Operators -- 13.2 Water Quality Needs Data Quality -- 13.2.1 Reproducibility and Precision -- 13.2.2 Accuracy and Error-Who Is Right, Who Is Wrong? -- 13.2.3 The "Smart Water" Paradigm-A Plea for Comparability -- 13.2.4 Real-Time Data Validation -- 13.3 Substances, Tools and Applications -- 13.3.1 UV-Vis Spectral Sensors -- 13.3.2 "Indirect" Spectral Measurement -- 13.3.3 Light Scattering Technologies -- 13.3.4 Fluorescence Spectroscopy -- 13.3.5 Electrical Conductivity -- 13.3.6 Ion Selective Electrodes (ISE), Sensors and Probes -- 13.4 Turning Data into Information-Some Monitoring and Control Applications -- 13.4.1 Control of Waste Water Processes -- 13.4.2 Delta Spectrometry for Process Control.
13.4.3 Prediction of Assimilable Organic Carbon (AOC) by Delta Spectrometry -- 13.4.4 Predictive or Feed-Forward Control (FFC) -- 13.4.5 Feed Forward Coagulation Control (FFCC) -- 13.4.6 Prediction of Chlorine Demand and Feed Forward Chlorine Control -- 13.4.7 Industrial Emissions Monitoring -- 13.5 Trends -- 13.5.1 IO(W)T-The Internet of (Water) Things -- 13.5.2 Digital Twin (DT) -- 13.5.3 Sensors for the People -- 13.5.4 Soft Sensors-Mining the Wealth of Water Data -- 13.6 Practical Deficits-The Urgent Wish List -- 13.7 Conclusions -- References -- 14 Catchment-Based Water Monitoring Using a Hierarchy of Sensor Types -- 14.1 Introduction -- 14.2 In-situ and Remote Instrumentation -- 14.2.1 In-situ Instrumentation -- 14.2.2 Practical Consideration for In-situ Sensing -- 14.2.3 Remote Instrumentation -- 14.3 Hierarchical Approach to Monitoring Catchment-Based Problems -- 14.3.1 Combinations of Sensor Types to Monitor Pollution Events -- 14.4 Conclusions -- References -- 15 Spectral Induced Polarization (SIP) Imaging for the Characterization of Hydrocarbon Contaminant Plumes -- 15.1 Spectral Induced Polarization (SIP) Imaging -- 15.2 Electrical Properties of Natural Media -- 15.3 Electrical Properties of Contaminated Soil -- 15.3.1 Hydrocarbons in Soils: Polar and Non-polar Compounds and Their SIP Response -- 15.3.2 Electrical Properties of Mature Hydrocarbon Plumes -- 15.4 Field Procedure and Data Processing -- 15.5 Interpretation of Field-Scale SIP Imaging Results -- 15.6 Monitoring of Nanoparticles Injections for Groundwater Remediation -- 15.7 Summary and Conclusions -- References -- 16 Direct Current Electrical Methods for Hydrogeological Purposes -- 16.1 Introduction -- 16.2 Definition and Hydrogeological Context -- 16.3 Measurement Setting -- 16.3.1 Unconventional DC Field Configuration -- 16.4 Modelling and Inversion -- 16.5 Field Applications.
16.5.1 Cross-Hole Electrical Resistivity Tomography for High Resolution Image of a Confined Aquifer.
Record Nr. UNINA-9910632488203321
Cham, Switzerland : , : Springer, , [2022]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Water supply network district metering : theory and case study / / Armando Di Nardo, Michele Di Natale, Anna Di Mauro
Water supply network district metering : theory and case study / / Armando Di Nardo, Michele Di Natale, Anna Di Mauro
Autore Di Nardo Armando
Edizione [1st ed. 2013.]
Pubbl/distr/stampa Vienna : , : Springer, , 2013
Descrizione fisica 1 online resource (94 pages) : illustrations
Disciplina 628.1
Collana CISM International Centre for Mechanical Sciences, Courses and Lectures
Soggetto topico Water-supply
Urban runoff - Management
Water leakage - Management
Water-meters
ISBN 1-299-19798-1
3-7091-1493-4
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Water leakage management -- Water district metering policy and practice -- Design support methodology -- Case study: Monterusciello network -- Conclusion.
Record Nr. UNINA-9910437773103321
Di Nardo Armando  
Vienna : , : Springer, , 2013
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui