Vai al contenuto principale della pagina
| Autore: |
Dhanaselvam P. Suveetha
|
| Titolo: |
Field Effect Transistors
|
| Pubblicazione: | Newark : , : John Wiley & Sons, Incorporated, , 2025 |
| ©2025 | |
| Edizione: | 1st ed. |
| Descrizione fisica: | 1 online resource (529 pages) |
| Disciplina: | 621.3815284 |
| Altri autori: |
RaoK. Srinivasa
RahiShiromani Balmukund
YadavDharmendra Singh
|
| Nota di contenuto: | Cover -- Series Page -- Title Page -- Copyright Page -- Contents -- Preface -- Chapter 1 Classical MOSFET Evolution: Foundations and Advantages -- 1.1 Introduction of Classical MOSFET -- 1.1.1 The Advantages of MOSFET -- 1.2 Dual-Gate MOSFET -- 1.2.1 Advantage -- 1.2.1.1 Scalability -- 1.2.1.2 Improvement of Gain -- 1.2.1.3 Low-Power Consumption -- 1.2.1.4 Better ION/IOFF -- 1.2.1.5 Higher Switching Speed -- 1.2.2 Application -- 1.2.2.1 RF Mixer -- 1.2.2.2 RF Amplifier -- 1.2.2.3 Controllable Gain -- 1.3 Gate-All-Around MOSFET -- 1.3.1 The Fabrication Procedure of GAA MOSFETs -- 1.3.2 Advantage of Gate-All-Around MOSFETs -- 1.3.2.1 Excellent Performance -- 1.3.2.2 The Ability to Shrink -- 1.3.2.3 Adjustable Nanosheet -- 1.3.2.4 Monitoring the Channel by Gate -- 1.4 ID-VG and ID-VG Characteristics of Conventional MOSFETs -- 1.4.1 Introduction to ID-VG Curves -- 1.4.2 Threshold Voltage and Saturation Region -- 1.4.2.1 Role of Threshold Voltage -- 1.4.2.2 Exploring the Saturation Region -- 1.5 Capacitance Characteristics of Conventional MOSFETs -- 1.5.1 The Role of Capacitance in MOSFET Behavior -- 1.5.2 CV Modeling of MOSFET Transistors -- 1.6 Frequency-Dependent Behavior -- 1.6.1 The Importance of Frequency-Dependent Analysis of MOSFET Transistors -- 1.6.2 Applications and Implications -- 1.6.2.1 RF Front-Ends -- 1.6.2.2 High-Speed Data Transmission -- 1.7 Conclusion -- References -- Chapter 2 Marvels of Modern Semiconductor Field-Effect Transistors -- 2.1 Introduction -- 2.2 Tunnel Field-Effect Transistor -- 2.2.1 Tunneling Junction -- 2.3 Junctionless Transistors -- 2.3.1 Physics and Properties -- 2.4 GAA-FETs the Origin of Nanowire FETs and Nanosheet FETs -- 2.5 Significance in Modern Electronics -- 2.6 Main Electrical Characteristics of GAA-FETs -- 2.7 GAA-FET Classification -- 2.8 Nanowire Field-Effect Transistors (NW-FETs). |
| 2.9 Nanosheet Field-Effect Transistors (NS-FETs) -- 2.10 Electrical Characteristics -- 2.11 Conclusion -- References -- Chapter 3 Introduction to Modern FET Technologies -- 3.1 Introduction -- 3.2 FinFETs (Fin Field-Effect Transistors) -- 3.2.1 The Evolution from Planar to FinFET -- 3.2.2 Unleashing the Power of FinFETs -- 3.2.3 Smaller Nodes, Greater Integration -- 3.2.4 Applications Across Industries -- 3.2.5 Challenges and Future Prospects -- 3.3 Unveiling Multi-Gate MOSFETs: A Symphony of Efficiency -- 3.3.1 Enter Multi-Gate MOSFETs -- 3.3.2 Three-Dimensional Mastery -- 3.3.3 Superior Switching Speeds -- 3.3.4 Power Efficiency on Point -- 3.3.5 Versatility Across Applications -- 3.3.6 The Future Landscape -- 3.4 Unveiling Nanoscale MOSFETs: The Miniaturization Marvel -- 3.4.1 Scaling Down to the Nanoscale -- 3.4.2 Quantum Tunneling and Beyond -- 3.4.3 FinFETs and Beyond -- 3.4.4 High-Performance Computing -- 3.4.5 Challenges and Innovations -- 3.4.6 The Future of Nanoscale MOSFETs -- 3.5 High-Electron Mobility Transistors (HEMTs): A Leap into the Future of FET Technology -- 3.5.1 The Essence of HEMTs -- 3.5.2 The Heterojunction Advantage -- 3.5.3 Applications Across Industries -- 3.5.4 Key Advantages of HEMTs -- 3.5.5 Future Prospects -- 3.6 Graphene Field-Effect Transistors (GFETs): Pioneering the Future of FET Technology -- 3.6.1 The Wonder of Graphene -- 3.6.2 The Structure of GFETs -- 3.6.3 Key Advantages of GFETs -- 3.6.4 Applications Across Industries -- 3.6.5 Challenges and Future Developments -- 3.7 Tunnel Field-Effect Transistors (TFETs): Navigating the Quantum Realm of Future Electronics -- 3.7.1 The Principle of Quantum Tunneling -- 3.7.2 How TFETs Work -- 3.7.3 Key Advantages of TFETs -- 3.7.4 Applications Across Industries -- 3.7.5 Challenges and Future Prospects. | |
| 3.8 Silicon Carbide (SiC) MOSFETs: Transforming Power Electronics for a Greener Future -- 3.8.1 The Power of Silicon Carbide -- 3.8.2 Advantages of SiC MOSFETs -- 3.8.3 Applications Across Industries -- 3.8.4 Challenges and Future Developments -- 3.9 Power MOSFETs: Empowering the Future of High-Efficiency Power Electronics -- 3.9.1 The Basics of Power MOSFETs -- 3.9.2 Key Features of Power MOSFETs -- 3.9.3 Applications Across Industries -- 3.9.4 Challenges and Future Developments -- 3.10 Gallium Nitride (GaN) High-Electron Mobility Transistors (HEMTs): Unleashing the Power of Wide Bandgap Semiconductors -- 3.10.1 The Wonders of Wide Bandgap -- 3.10.2 Key Features of GaN HEMTs -- 3.10.3 Applications Across Industries -- 3.10.4 Challenges and Future Prospects -- 3.11 Organic Field-Effect Transistors (OFETs): Bridging the Gap to Flexible and Sustainable Electronics -- 3.11.1 The Organic Advantage -- 3.11.2 Key Features of OFETs -- 3.11.3 Applications Across Industries -- 3.11.4 Challenges and Future Directions -- 3.12 Conclusion -- Bibliography -- Chapter 4 Scaling of Field-Effect Transistors -- 4.1 Introduction -- 4.2 Short-Channel Effect -- 4.3 FinFET Overview -- 4.3.1 History of Development -- 4.3.2 Difficulties and Challenges -- 4.4 GAAFET Overview -- 4.4.1 History of Development -- 4.4.2 Difficulties and Challenges -- 4.5 Conclusions -- References -- Chapter 5 Future Prospective Beyond CMOS Technology Design -- 5.1 Introduction -- 5.2 Spintronics -- 5.2.1 Applications -- 5.3 Carbon Nanotube Transistors -- 5.4 Memristor -- 5.4.1 Working Principle -- 5.5 Applications -- 5.6 Quantum Dots -- 5.6.1 Operation and Applications -- References -- Chapter 6 Nanowire Transistors -- 6.1 Introduction -- 6.2 Nanowire FETs -- 6.2.1 Device Design -- 6.3 Organic Nanowire Transistors -- 6.4 Conclusion -- References. | |
| Chapter 7 Advancement of Nanotechnology and NP-Based Biosensors -- 7.1 Introduction -- 7.2 Metal Oxide-Based Biosensors -- 7.3 Zinc Oxide-Based Biosensor -- 7.3.1 0D Nanostructures (Zero-Dimensional) -- 7.3.2 1D Nanostructures (One-Dimensional) -- 7.3.3 2D Nanostructures (Two-Dimensional) -- 7.3.4 3D Nanostructures (Three-Dimensional) -- 7.4 AuNP-Based Biosensors -- 7.5 GR-Based Biosensors -- References -- Chapter 8 Technology Behind Junctionless Semiconductor Devices -- 8.1 Introduction -- 8.2 Operating Modes Based on the Structure of the Device -- 8.3 TCAD Simulations -- 8.4 Effect of Temperature -- 8.5 Results and Discussions -- 8.6 Conclusion -- References -- Chapter 9 Breaking Barriers: Junctionless Metal-Oxide-Semiconductor Transistors Reinventing Semiconductor Technology -- 9.1 Introduction -- 9.1.1 The Evolution of Semiconductor Technology -- 9.1.2 Fundamentals of MOS Transistors -- 9.1.2.1 Structure of a MOS Transistor -- 9.1.2.2 Operation of a MOS Transistor -- 9.1.3 Overview of Junctionless Metal-Oxide-Semiconductor Transistors -- 9.2 Junctionless MOS Transistors: Principles and Concepts -- 9.2.1 Structure of Junctionless Transistor -- 9.2.2 Junctionless Nanowire Transistor (JNT) -- 9.2.3 Bulk Planar Junctionless Transistor (BPJLT) -- 9.3 Fabrication Techniques for Junctionless Transistors -- 9.3.1 Characteristics of Junctionless Transistors -- 9.3.1.1 Gated Resistor Characteristics -- 9.3.1.2 Gated Resistor and Intrinsic Device Delay Time -- 9.3.1.3 Variation of a Doping Concentration in an n-Type Gated Resistor -- 9.3.1.4 Transfer Characteristics -- 9.3.2 Comparison of Junction and Junctionless Transistor -- 9.4 Real-World Implementations of Junctionless Transistors -- 9.4.1 Current Limitations and Obstacles -- 9.5 Conclusion -- 9.6 Applications -- References. | |
| Chapter 10 Performance Estimation of Junctionless Tunnel Field-Effect Transistor (JL-TFET): Device Structure and Simulation Through TCAD -- 10.1 Introduction -- 10.1.1 Introduction to TFET -- 10.1.1.1 TFET Structure and Working -- 10.2 Junctionless TFETs -- 10.2.1 Motivation for Junctionless TFETs -- 10.2.2 Existing Structure of Junctionless TFET -- 10.3 Design Structure of Junctionless TFETs -- 10.3.1 Junctionless TFET Structure -- 10.4 Conclusion -- References -- Chapter 11 Science and Technology of Tunnel Field-Effect Transistors -- 11.1 Phenomenon of Quantum Tunneling -- 11.2 Tunneling Mathematics -- 11.2.1 Schrodinger's Equation -- 11.2.2 Tunneling Through Rectangular Potential Barrier -- 11.2.3 WKB Approximation Model -- 11.2.4 Local Band-to-Band Tunneling Models -- 11.2.4.1 Kane's Model -- 11.2.5 Non-Local Band-To-Band Tunneling Models -- 11.3 Tunnel Field-Effect Transistors (TFETs) -- 11.3.1 Limitations of MOSFET -- 11.3.2 Mechanism and Structure of TFET -- 11.3.3 Advantages and Limitations of TFET -- 11.3.4 Types of Tunneling -- 11.3.4.1 Point Tunneling -- 11.3.4.2 Line Tunneling -- 11.3.5 Methods of Enhancing Performance of TFETs -- 11.3.5.1 Doping Engineering -- 11.3.5.2 Geometry Engineering -- 11.3.5.3 Material and Band Engineering -- 11.3.5.4 Employing Techniques to Enhance TFET Performance -- 11.3.6 RF and Small Signal Analysis of TFETs -- 11.3.6.1 Small Signal Model of N-TFET in ON/OFF State -- 11.3.7 Applications of TFET Devices -- 11.4 Conclusion -- References -- Chapter 12 Circuits Designed for Energy-Harvesting Applications That Leverage TFETs to Achieve Extremely Low Power Consumption -- 12.1 Introduction -- 12.1.1 The Roadmap for Technology Scaling -- 12.1.2 New Approaches for Upcoming Technology Generations -- 12.2 Energy Harvesting in an Era Beyond Moore's Law. | |
| 12.3 Tunnel Field-Effect Transistors (TFETs) as a Vital Technology for Energy Harvesting. | |
| Titolo autorizzato: | Field Effect Transistors ![]() |
| ISBN: | 9781394248506 |
| 1394248504 | |
| 9781394248490 | |
| 1394248490 | |
| 9781394248483 | |
| 1394248482 | |
| Formato: | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione: | Inglese |
| Record Nr.: | 9911020194103321 |
| Lo trovi qui: | Univ. Federico II |
| Opac: | Controlla la disponibilità qui |