top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Algorithms and Models for the Web Graph : 18th International Workshop, WAW 2023, Toronto, on, Canada, May 23-26, 2023, Proceedings / / Megan Dewar [and four others], editors
Algorithms and Models for the Web Graph : 18th International Workshop, WAW 2023, Toronto, on, Canada, May 23-26, 2023, Proceedings / / Megan Dewar [and four others], editors
Edizione [First edition.]
Pubbl/distr/stampa Cham, Switzerland : , : Springer, , [2023]
Descrizione fisica 1 online resource (203 pages)
Disciplina 005.1
Collana Lecture Notes in Computer Science Series
Soggetto topico Computer algorithms
Data mining
World Wide Web
Soggetto non controllato Information Theory
Computer Science
Computers
ISBN 9783031322969
9783031322952
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Intro -- Preface -- Organization -- Contents -- Correcting for Granularity Bias in Modularity-Based Community Detection Methods -- 1 Introduction -- 2 Hyperspherical Geometry -- 3 The Heuristic -- 4 Derivation of the Heuristic -- 5 Experiments -- 6 Discussion -- References -- The Emergence of a Giant Component in One-Dimensional Inhomogeneous Networks with Long-Range Effects -- 1 Introduction and Statement of Result -- 1.1 The Weight-Dependent Random Connection Model -- 1.2 Main Result -- 1.3 Examples -- 2 Proof of the Main Theorem -- 2.1 Some Construction and Notation -- 2.2 Connecting Far Apart Vertex Sets -- 2.3 Existence of a Giant Component -- 2.4 Absence of an Infinite Component -- References -- Unsupervised Framework for Evaluating Structural Node Embeddings of Graphs -- 1 Introduction -- 2 Framework -- 2.1 Input/Output -- 2.2 Formal Description of the Algorithm -- 2.3 Properties -- 3 Experimentation -- 3.1 Synthetic Graphs Design -- 3.2 Algorithmic Properties of the Framework -- 3.3 Role Classification Case Study -- 4 Conclusion -- References -- Modularity Based Community Detection in Hypergraphs -- 1 Introduction -- 2 Modularity Functions -- 3 Hypergraph Modularity Optimization Algorithm -- 3.1 Louvain Algorithm -- 3.2 Challenges with Adjusting the Algorithm to Hypergraphs -- 3.3 Our Approach to Hypergraph Modularity Optimization: h-Louvain -- 4 Results -- 4.1 Synthetic Hypergraph Model: h-ABCD -- 4.2 Exhaustive Search for the Best Strategy -- 4.3 Comparing Basic Policies for Different Modularity Functions -- 5 Conclusions -- References -- Establishing Herd Immunity is Hard Even in Simple Geometric Networks -- 1 Introduction -- 2 Preliminaries -- 3 Unanimous Thresholds -- 4 Constant Thresholds -- 5 Majority Thresholds -- 6 Conclusions -- References -- Multilayer Hypergraph Clustering Using the Aggregate Similarity Matrix.
1 Introduction -- 2 Related Work -- 3 Algorithm and Main Results -- 4 Numerical Illustrations -- 5 Analysis of the Algorithm -- 5.1 SDP Analysis -- 5.2 Upper Bound on -- 5.3 Lower Bound on Dii -- 5.4 Assortativity -- 5.5 Proof of Theorem 1 -- 6 Conclusions -- References -- The Myth of the Robust-Yet-Fragile Nature of Scale-Free Networks: An Empirical Analysis -- 1 Introduction -- 2 Data -- 2.1 Network Collection -- 2.2 Network Categorization -- 2.3 Handling Weighted Networks -- 2.4 Preprocessing -- 3 Scale-Freeness Analysis -- 3.1 Scale-Freeness Classification Methods -- 3.2 Results -- 4 Robustness Analysis -- 4.1 Network Robustness -- 4.2 Configuration -- 4.3 Results -- 5 Conclusions -- 6 Appendix -- 6.1 Scale-Freeness Classification: Further Analysis -- 6.2 Robustness: Further Analysis -- 6.3 The Curious Case of Collins Yeast Interactome -- References -- A Random Graph Model for Clustering Graphs -- 1 Introduction -- 2 Preliminaries -- 3 Homomorphism Counts in the Chung-Lu Model -- 4 Random Clustering Graph Model -- 5 Homomorphism Counts -- 5.1 Extension Configurations -- 5.2 Expected Homomorphism Counts -- 5.3 Concentration of Subgraph Counts -- References -- Topological Analysis of Temporal Hypergraphs -- 1 Introduction -- 2 Method and Background -- 2.1 Temporal Hypergraphs -- 2.2 Sliding Windows for Hypergraph Snapshots -- 2.3 Associated ASC of a Hypergraph -- 2.4 Simplicial Homology -- 2.5 Zigzag Persistent Homology -- 3 Applications -- 3.1 Social Network Analysis -- 3.2 Cyber Data Analysis -- 4 Conclusion -- References -- PageRank Nibble on the Sparse Directed Stochastic Block Model -- 1 Introduction -- 2 Main Results -- 3 Proofs -- 4 Results from Simulations -- 5 Remarks and Conclusions -- References -- A Simple Model of Influence -- 1 Introduction -- 2 Analysis for Random Graphs G(n,m) -- 3 Proof of Lemma 1.
4 The Effect of Stubborn Vertices -- 5 The Largest Fragment in G(n,m) -- References -- The Iterated Local Transitivity Model for Tournaments -- 1 Introduction -- 2 Small World Property -- 3 Motifs and Universality -- 4 Graph-Theoretic Properties of the Models -- 4.1 Hamiltonicity -- 4.2 Spectral Properties -- 4.3 Domination Numbers -- 5 Conclusion and Further Directions -- References -- Author Index.
Record Nr. UNISA-996534466403316
Cham, Switzerland : , : Springer, , [2023]
Materiale a stampa
Lo trovi qui: Univ. di Salerno
Opac: Controlla la disponibilità qui
Algorithms and Models for the Web Graph : 18th International Workshop, WAW 2023, Toronto, ON, Canada, May 23–26, 2023, Proceedings / / edited by Megan Dewar, Paweł Prałat, Przemysław Szufel, François Théberge, Małgorzata Wrzosek
Algorithms and Models for the Web Graph : 18th International Workshop, WAW 2023, Toronto, ON, Canada, May 23–26, 2023, Proceedings / / edited by Megan Dewar, Paweł Prałat, Przemysław Szufel, François Théberge, Małgorzata Wrzosek
Edizione [1st ed. 2023.]
Pubbl/distr/stampa Cham : , : Springer Nature Switzerland : , : Imprint : Springer, , 2023
Descrizione fisica 1 online resource (203 pages)
Disciplina 005.1
Collana Lecture Notes in Computer Science
Soggetto topico Computer science
Data structures (Computer science)
Information theory
Application software
Computer science - Mathematics
Discrete mathematics
Computer networks
Theory of Computation
Data Structures and Information Theory
Computer and Information Systems Applications
Discrete Mathematics in Computer Science
Computer Communication Networks
ISBN 9783031322969
9783031322952
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Correcting for Granularity Bias in Modularity-Based Community Detection Methods -- The emergence of a giant component in one-dimensional inhomogeneous networks with long-range effects -- Unsupervised Framework for Evaluating Structural Node Embeddings of Graphs -- Modularity Based Community Detection in Hypergraphs -- Establishing Herd Immunity is Hard Even in Simple Geometric Networks -- Multilayer hypergraph clustering using the aggregate similarity matrix -- The Myth of the Robust-Yet-Fragile Nature of Scale-Free Networks: An Empirical Analysis -- A Random Graph Model for Clustering Graphs -- Topological Analysis of Temporal Hypergraphs -- PageRank Nibble on the sparse directed stochastic block model -- A simple model of influence -- The Iterated Local Transitivity Model for Tournaments.
Record Nr. UNINA-9910725101403321
Cham : , : Springer Nature Switzerland : , : Imprint : Springer, , 2023
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui