The Joy of Sets [[electronic resource] ] : Fundamentals of Contemporary Set Theory / / by Keith Devlin
| The Joy of Sets [[electronic resource] ] : Fundamentals of Contemporary Set Theory / / by Keith Devlin |
| Autore | Devlin Keith J |
| Edizione | [2nd ed. 1993.] |
| Pubbl/distr/stampa | New York, NY : , : Springer New York : , : Imprint : Springer, , 1993 |
| Descrizione fisica | 1 online resource (X, 194 p.) |
| Disciplina | 511.3 |
| Altri autori (Persone) | DevlinKeith J |
| Collana | Undergraduate Texts in Mathematics |
| Soggetto topico |
Mathematical logic
Computer science - Mathematics Mathematical Logic and Foundations Math Applications in Computer Science |
| ISBN | 1-4612-0903-X |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto | 1 Naive Set Theory -- 1.1 What is a Set? -- 1.2 Operations on Sets -- 1.3 Notation for Sets -- 1.4 Sets of Sets -- 1.5 Relations -- 1.6 Functions -- 1.7 Well-Or der ings and Ordinals -- 1.8 Problems -- 2 The Zermelo—Fraenkel Axioms -- 2.1 The Language of Set Theory -- 2.2 The Cumulative Hierarchy of Sets -- 2.3 The Zermelo—Fraenkel Axioms -- 2.4 Classes -- 2.5 Set Theory as an Axiomatic Theory -- 2.6 The Recursion Principle -- 2.7 The Axiom of Choice -- 2.8 Problems -- 3 Ordinal and Cardinal Numbers -- 3.1 Ordinal Numbers -- 3.2 Addition of Ordinals -- 3.3 Multiplication of Ordinals -- 3.4 Sequences of Ordinals -- 3.5 Ordinal Exponentiation -- 3.6 Cardinality, Cardinal Numbers -- 3.7 Arithmetic of Cardinal Numbers -- 3.8 Regular and Singular Cardinals -- 3.9 Cardinal Exponentiation -- 3.10 Inaccessible Cardinals -- 3.11 Problems -- 4 Topics in Pure Set Theory -- 4.1 The Borel Hierarchy -- 4.2 Closed Unbounded Sets -- 4.3 Stationary Sets and Regressive Functions -- 4.4 Trees -- 4.5 Extensions of Lebesgue Measure -- 4.6 A Result About the GCH -- 5 The Axiom of Constructibility -- 5.1 Constructible Sets -- 5.2 The Constructible Hierarchy -- 5.3 The Axiom of Constructibility -- 5.4 The Consistency of V = L -- 5.5 Use of the Axiom of Constructibility -- 6 Independence Proofs in Set Theory -- 6.1 Some Undecidable Statements -- 6.2 The Idea of a Boolean-Valued Universe -- 6.3 The Boolean-Valued Universe -- 6.4 VB and V -- 6.5 Boolean-Valued Sets and Independence Proofs -- 6.6 The Nonprovability of the CH -- 7 Non-Well-Founded Set Theory -- 7.1 Set-Membership Diagrams -- 7.2 The Anti-Foundation Axiom -- 7.3 The Solution Lemma -- 7.4 Inductive Definitions Under AFA -- 7.5 Graphs and Systems -- 7.6 Proof of the Solution Lemma -- 7.7 Co-Inductive Definitions -- 7.8 A Model of ZF- +AFA -- Glossary of Symbols. |
| Record Nr. | UNINA-9910789344403321 |
Devlin Keith J
|
||
| New York, NY : , : Springer New York : , : Imprint : Springer, , 1993 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
The Joy of Sets : Fundamentals of Contemporary Set Theory / / by Keith Devlin
| The Joy of Sets : Fundamentals of Contemporary Set Theory / / by Keith Devlin |
| Autore | Devlin Keith J |
| Edizione | [2nd ed. 1993.] |
| Pubbl/distr/stampa | New York, NY : , : Springer New York : , : Imprint : Springer, , 1993 |
| Descrizione fisica | 1 online resource (X, 194 p.) |
| Disciplina | 511.3 |
| Altri autori (Persone) | DevlinKeith J |
| Collana | Undergraduate Texts in Mathematics |
| Soggetto topico |
Logic, Symbolic and mathematical
Computer science - Mathematics Mathematical Logic and Foundations Mathematical Applications in Computer Science |
| ISBN | 1-4612-0903-X |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto | 1 Naive Set Theory -- 1.1 What is a Set? -- 1.2 Operations on Sets -- 1.3 Notation for Sets -- 1.4 Sets of Sets -- 1.5 Relations -- 1.6 Functions -- 1.7 Well-Or der ings and Ordinals -- 1.8 Problems -- 2 The Zermelo—Fraenkel Axioms -- 2.1 The Language of Set Theory -- 2.2 The Cumulative Hierarchy of Sets -- 2.3 The Zermelo—Fraenkel Axioms -- 2.4 Classes -- 2.5 Set Theory as an Axiomatic Theory -- 2.6 The Recursion Principle -- 2.7 The Axiom of Choice -- 2.8 Problems -- 3 Ordinal and Cardinal Numbers -- 3.1 Ordinal Numbers -- 3.2 Addition of Ordinals -- 3.3 Multiplication of Ordinals -- 3.4 Sequences of Ordinals -- 3.5 Ordinal Exponentiation -- 3.6 Cardinality, Cardinal Numbers -- 3.7 Arithmetic of Cardinal Numbers -- 3.8 Regular and Singular Cardinals -- 3.9 Cardinal Exponentiation -- 3.10 Inaccessible Cardinals -- 3.11 Problems -- 4 Topics in Pure Set Theory -- 4.1 The Borel Hierarchy -- 4.2 Closed Unbounded Sets -- 4.3 Stationary Sets and Regressive Functions -- 4.4 Trees -- 4.5 Extensions of Lebesgue Measure -- 4.6 A Result About the GCH -- 5 The Axiom of Constructibility -- 5.1 Constructible Sets -- 5.2 The Constructible Hierarchy -- 5.3 The Axiom of Constructibility -- 5.4 The Consistency of V = L -- 5.5 Use of the Axiom of Constructibility -- 6 Independence Proofs in Set Theory -- 6.1 Some Undecidable Statements -- 6.2 The Idea of a Boolean-Valued Universe -- 6.3 The Boolean-Valued Universe -- 6.4 VB and V -- 6.5 Boolean-Valued Sets and Independence Proofs -- 6.6 The Nonprovability of the CH -- 7 Non-Well-Founded Set Theory -- 7.1 Set-Membership Diagrams -- 7.2 The Anti-Foundation Axiom -- 7.3 The Solution Lemma -- 7.4 Inductive Definitions Under AFA -- 7.5 Graphs and Systems -- 7.6 Proof of the Solution Lemma -- 7.7 Co-Inductive Definitions -- 7.8 A Model of ZF- +AFA -- Glossary of Symbols. |
| Record Nr. | UNINA-9910971117303321 |
Devlin Keith J
|
||
| New York, NY : , : Springer New York : , : Imprint : Springer, , 1993 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||