top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Nanotechnology-based additive manufacturing : product design, properties and applications / / edited by Kalim Deshmukh, S. K. Khadheer Pasha, and Kishor Kumar Sadasivuni
Nanotechnology-based additive manufacturing : product design, properties and applications / / edited by Kalim Deshmukh, S. K. Khadheer Pasha, and Kishor Kumar Sadasivuni
Pubbl/distr/stampa Wiesbaden, Germany : , : Wiley-VCH, , [2023]
Descrizione fisica 1 online resource (762 pages)
Disciplina 621.988
Soggetto topico Nanotechnology
Additive manufacturing
ISBN 3-527-83547-4
3-527-83545-8
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Cover Volume 1 -- Title Page -- Copyright Page -- Contents -- Preface -- Chapter 1 State-of-the-Art Overview and Recent Trends in Additive Manufacturing: Opportunities, Limitations, and Current Market -- 1.1 Introduction -- 1.2 Classification of AM Processes -- 1.2.1 Powder Bed Fusion -- 1.2.2 Binder Jetting -- 1.2.3 Material Extrusion -- 1.2.4 Material Jetting -- 1.2.5 Sheet Lamination -- 1.2.6 Direct Energy Deposition -- 1.2.7 VAT Polymerization -- 1.3 Recent Trends in AM -- 1.3.1 AM Software Solutions in Simulation -- 1.3.2 AM and Machine Connectivity -- 1.3.3 Converge of AM and AI -- 1.3.4 Automation and Workflow -- 1.3.5 Advancement in AM Amenable Materials Development -- 1.3.6 Economics of Manufacturing -- 1.3.7 Limitations -- 1.3.8 Sustainability in AM -- 1.4 Conclusion and Outlook -- References -- Chapter 2 Additive Manufacturing Technologies and Post-processing, Design Optimization, and Material Considerations for Reliable Printing -- 2.1 Introduction -- 2.2 Chronological Evolution of AM Technologies -- 2.2.1 Vat Polymerization or Stereolithography (SLA) -- 2.2.2 Material Jetting (MJ) -- 2.2.3 Fused Deposition Modeling (FDM) -- 2.2.4 Laminated Object Manufacturing (LOM) -- 2.2.5 Binder Jetting (BJ) -- 2.2.6 Powder Bed Systems -- 2.2.7 Powder Feed Systems or Direct Energy Depositions (DED) -- 2.2.8 Wire Feed System or Wire Arc AM (WAAM) -- 2.3 Post-processing Techniques -- 2.4 Design Optimization -- 2.5 Materials -- 2.6 Conclusions -- Acknowledgments -- References -- Chapter 3 Nanomaterials and Nanostructures in Additive Manufacturing: Properties, Applications, and Technological Challenges -- 3.1 Introduction -- 3.2 Classification of Nanomaterials -- 3.2.1 Functionalized Nanomaterials and Nanostructures in Additive Manufacturing -- 3.3 Properties of Nanomaterials/Composites in Additive Manufacturing -- 3.3.1 Mechanical Properties.
3.3.2 Thermal Properties -- 3.3.3 Responsive Properties -- 3.3.4 Optical Properties -- 3.3.5 Geometric Properties -- 3.3.6 Biological Properties -- 3.4 Applications -- 3.4.1 Energy Conversion and Storage Applications -- 3.4.1.1 Thermoelectric -- 3.4.1.2 Supercapacitors -- 3.4.1.3 Batteries -- 3.4.1.4 Solar Cells -- 3.4.2 Sensing Applications -- 3.4.3 Thermal Management Applications -- 3.4.4 Biomedical Applications -- 3.5 Technological Challenges -- 3.5.1 Risk of Nanomaterial in 3D Printing: Human Health and Safety-Related -- 3.5.2 Regulatory Issues -- 3.5.3 Design Limitations -- 3.6 Conclusions -- References -- Chapter 4 Metal Additive Manufacturing of PEM Fuel Cell Flow Field Plates and the Scope of Nanomaterials for Its Fabrication -- 4.1 Introduction -- 4.2 Materials Used for Flow Field Plates -- 4.2.1 Graphite Plates -- 4.2.2 Polymer Composites -- 4.2.3 Metal Plates -- 4.3 Additive Manufacturing of Metal Flow Field Plates -- 4.4 Can Nanomaterials + Additive Manufacturing Be a Game-Changer? -- 4.5 Outlook and Prospectus -- References -- Chapter 5 Additive Manufacturing of Ceramic-Based Materials -- 5.1 Introduction -- 5.2 Ceramic Materials -- 5.3 Ceramic Additive Manufacturing -- 5.4 CAM: Single-Step Processing -- 5.4.1 Direct Energy Deposition (DED) -- 5.4.2 Selective Laser Sintering -- 5.5 CAM: Multi-Step Processing -- 5.5.1 Powder Bed Fusion (PBF) -- 5.5.2 Binder Jetting -- 5.5.3 Laminated Object Manufacturing -- 5.5.4 Material Extrusion -- 5.5.4.1 Fused Filament Fabrication -- 5.5.5 Material Jetting -- 5.5.5.1 Direct Ink Printing -- 5.5.6 Photopolymerization -- 5.5.6.1 Ceramic Stereolithography (CSL) -- 5.5.6.2 Digital Light Processing (DLP) -- 5.6 Different Ceramic-Based Materials Fabricated by Additive Manufacturing (AM) -- 5.7 Conclusion and Future Prospects -- References -- Chapter 6 Additive Manufacturing of Tunable Metamaterials.
6.1 Introduction -- 6.2 Mechanical Metamaterials -- 6.2.1 Introduction -- 6.2.2 VAT Polymerization -- 6.2.3 Selective Laser Melting -- 6.2.4 Electron Beam Melting -- 6.2.5 Material Jetting -- 6.2.6 Selective Laser Sintering -- 6.2.7 Fused Deposition Modeling -- 6.3 Electromagnetic Metamaterials -- 6.3.1 Material Extrusion -- 6.3.2 Inkjet Printing -- 6.3.3 VAT Polymerization -- 6.4 Acoustic Metamaterials -- 6.4.1 Introduction -- 6.4.2 Fused Deposition Modeling -- 6.4.3 Material Jetting -- 6.4.4 Powder-Bed Fusion -- 6.4.5 VAT Polymerization -- 6.5 Multimaterial Approaches -- 6.5.1 Material Extrusion -- 6.5.2 Inkjet Printing -- 6.5.3 VAT Polymerization -- 6.6 Conclusions -- References -- Chapter 7 Additive Manufacturing of Hydrogels -- Abbreviations -- 7.1 Introduction -- 7.2 History of AM -- 7.3 Role of Nanomaterials and Nanostructures in AM -- 7.4 Importance of Hydrogels -- 7.5 AM Techniques -- 7.5.1 Liquid-Based Techniques -- 7.5.1.1 Stereolithography -- 7.5.1.2 Inkjet Printing -- 7.6 Powder-Based Techniques -- 7.6.1 Selective Laser Sintering -- 7.7 Molten Filament-Based Techniques -- 7.7.1 FDM Extrusion and Deposition Process -- 7.7.2 Synthesis of Hybrid Nanomaterials -- 7.7.3 Metal Nanomaterial-Based Hydrogels in AM -- 7.7.4 Metal Oxide Nanomaterial-Based Hydrogels in AM -- 7.7.5 Carbonaceous Nanomaterial-Hydrogel Based in AM -- 7.7.6 Polymer Nanomaterial-Based Hydrogel in AM -- 7.8 AM-Printed Hydrogel Application-Based Hybrid Nanomaterials -- 7.9 Biomedical Applications Based on Printed Hydrogels -- 7.10 3D-Printed Hydrogel-Based Biosensors -- 7.11 Lab on a Chip-Based 3D-Printed hydrogels -- 7.12 3D-Printed Hydrogel-Based Wearable and Other Applications -- 7.13 Actuators Based on 3D-Printed Hydrogels -- 7.14 Future Scope of AM through 3D printing of Hydrogels -- 7.15 Conclusions -- Acknowledgment -- References.
Chapter 8 Self-Healing Polymers and Composites for Additive Manufacturing: Materials, Properties, and Applications -- 8.1 Introduction -- 8.2 Extrinsic and Intrinsic Self-Healing Systems -- 8.2.1 Extrinsic Self-Healing System -- 8.2.2 Intrinsic Self-Healing System -- 8.2.3 3D/4D Self-Healing Polymer and Composite -- 8.3 Conclusions -- Acknowledgments -- References -- Chapter 9 Stimuli-Responsive Smart Materials for Additive Manufacturing -- 9.1 Introduction -- 9.2 External Stimuli -- 9.2.1 Temperature -- 9.2.2 Moisture -- 9.2.3 pH -- 9.2.4 Light -- 9.2.5 Magnetic -- 9.2.6 Mechanical Loading -- 9.2.7 Solvent -- 9.3 Stimuli-Responsive Smart Materials -- 9.3.1 Polymers -- 9.3.1.1 Shape Memory Polymers -- 9.3.1.2 Photocurable Polymers -- 9.3.1.3 Hydrogels -- 9.3.1.4 Liquid Crystal Polymers -- 9.3.1.5 Bioinks -- 9.3.1.6 Composites -- 9.3.2 Metallic Materials -- 9.3.2.1 NiTi Alloys -- 9.3.2.2 Cu-Based Alloys -- 9.3.2.3 Ni-Mn-Ga Alloys -- 9.3.3 Ceramics -- 9.4 Conclusions and Future Perspectives -- Acknowledgments -- References -- Chapter 10 Additive Manufacturing of Multifunctional Polymer Nanocomposites: From 3D to 4D -- 10.1 Introduction -- 10.2 Types and Classification of Nanomaterials -- 10.2.1 Carbon-Based Nanomaterials -- 10.2.2 Inorganic NMs -- 10.2.3 Organic NMs -- 10.2.4 Composite NMs -- 10.3 Classification of Nanomaterials Based on Their Dimensions -- 10.4 Classification of Nanomaterials Based on Their Origin -- 10.5 Multifunctional Polymer Nanocomposites -- 10.6 Additive Manufacturing (AM) Process -- 10.7 Classification of Additive Manufacturing Technology -- 10.7.1 Material Jetting Process (MJ) -- 10.7.2 Polyjet Printing -- 10.7.3 Binder Jetting (BJ) -- 10.7.4 Vat Photo Polymerization -- 10.7.5 Stereolithography (SLA) -- 10.7.6 Direct Light Processing (DLP) -- 10.7.7 Powder Bed Fusion (PBF) -- 10.7.8 Material Extrusion (ME).
10.7.9 Directed Energy Deposition (DED) -- 10.7.10 Sheet Lamination -- 10.8 Additive Manufacturing of Multifunctional Polymer Nanocomposites -- 10.9 4D Printing -- 10.10 Recent Advances in 3D/4D Printing of Polymer Nanocomposites -- 10.11 Conclusion -- References -- Chapter 11 Additive Manufacturing of Fiberglass-Reinforced Polymer Composites -- 11.1 Introduction -- 11.2 Fabrication Method -- 11.3 Physical/Chemical Characteristics -- 11.4 Application in Piezoelectric/Triboelectric Energy Harvesting -- 11.5 Application in Magnetic/Triboelectric Energy Harvesting -- 11.6 Applications in Sensing -- 11.7 Challenges and Future Perspectives -- 11.8 Conclusions -- Acknowledgments -- References -- Chapter 12 Advanced 2D Nanomaterials for Additive Manufacturing -- 12.1 Introduction -- 12.2 Hexagonal Boron Nitride (hBN) -- 12.2.1 Introduction -- 12.2.2 2D-hBN Nanosheets: Fabrication and Advancement -- 12.2.2.1 Exfoliation Using Mechanical Method -- 12.2.2.2 Exfoliation Using Liquid -- 12.2.2.3 CVD (Chemical Vapor Deposition) -- 12.2.2.4 Exfoliation Using Ion-Intercalation -- 12.2.2.5 PVD -- 12.2.3 2D-hBN: Properties and Application -- 12.2.4 2D hBN in Additive Manufacturing -- 12.3 MXenes -- 12.3.1 Introduction -- 12.3.2 Synthesis of MXenes -- 12.3.3 MXenes for Additive Manufacturing -- 12.4 Transition Metal Dichalcogenides (TMDs) -- 12.4.1 Introduction -- 12.4.2 Synthesis of TMDs -- 12.4.3 TMDs for Additive Manufacturing -- 12.5 Graphene -- 12.5.1 Introduction -- 12.5.2 Synthesis of Graphene -- 12.5.3 Graphene for Additive Manufacturing -- 12.6 Conclusion -- References -- Title Page -- Copyright Page -- Contents -- Preface -- Chapter 13 Nanomaterials-Based Additive Manufacturing for Mass Production of Energy Storage Systems: 3D Printed Batteries and Supercapacitors -- 13.1 Introduction -- 13.2 3D Printing for Energy Storage Devices -- 13.2.1 Inkjet Printing.
13.2.2 Direct Ink Writing.
Record Nr. UNINA-9910683400003321
Wiesbaden, Germany : , : Wiley-VCH, , [2023]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Two-Dimensional Nanomaterials Based Polymer Nanocomposites : Processing, Properties and Applications
Two-Dimensional Nanomaterials Based Polymer Nanocomposites : Processing, Properties and Applications
Autore Pandey Mayank
Edizione [1st ed.]
Pubbl/distr/stampa Newark : , : John Wiley & Sons, Incorporated, , 2024
Descrizione fisica 1 online resource (828 pages)
Altri autori (Persone) DeshmukhKalim
HussainChaudhery Mustansar
ISBN 1-119-90511-7
1-119-90510-9
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910861101203321
Pandey Mayank  
Newark : , : John Wiley & Sons, Incorporated, , 2024
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui