Effective Statistical Learning Methods for Actuaries I : GLMs and Extensions / / by Michel Denuit, Donatien Hainaut, Julien Trufin
| Effective Statistical Learning Methods for Actuaries I : GLMs and Extensions / / by Michel Denuit, Donatien Hainaut, Julien Trufin |
| Autore | Denuit Michel |
| Edizione | [1st ed. 2019.] |
| Pubbl/distr/stampa | Cham : , : Springer International Publishing : , : Imprint : Springer, , 2019 |
| Descrizione fisica | 1 online resource (XVI, 441 p. 82 illus., 23 illus. in color.) |
| Disciplina | 368.01 |
| Collana | Springer Actuarial Lecture Notes |
| Soggetto topico |
Actuarial science
Statistics Actuarial Mathematics Statistics in Business, Management, Economics, Finance, Insurance |
| ISBN |
9783030258207
3030258203 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto | Preface -- Part I: LOSS MODELS.-1. Insurance Risk Classification.-Exponential Dispersion (ED) Distributions.-3.-Maximum Likelihood Estimation.-Part II LINEAR MODELS.-4. Generalized Linear Models (GLMs) -- 5.-Over-dispersion, credibility adjustments, mixed models, and regularization.-Part III ADDITIVE MODELS -- 6 Generalized Additive Models (GAMs) -- 7. Beyond Mean Modeling: Double GLMs and GAMs for Location, Scale and Shape (GAMLSS) -- Part IV SPECIAL TOPICS -- 8. Some Generalized Non-Linear Models (GNMs) -- 9 Extreme Value Models -- References. |
| Record Nr. | UNINA-9910349321203321 |
Denuit Michel
|
||
| Cham : , : Springer International Publishing : , : Imprint : Springer, , 2019 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Effective Statistical Learning Methods for Actuaries II : Tree-Based Methods and Extensions / / by Michel Denuit, Donatien Hainaut, Julien Trufin
| Effective Statistical Learning Methods for Actuaries II : Tree-Based Methods and Extensions / / by Michel Denuit, Donatien Hainaut, Julien Trufin |
| Autore | Denuit Michel |
| Edizione | [1st ed. 2020.] |
| Pubbl/distr/stampa | Cham : , : Springer International Publishing : , : Imprint : Springer, , 2020 |
| Descrizione fisica | 1 online resource (X, 228 p. 68 illus., 6 illus. in color.) |
| Disciplina | 519.536 |
| Collana | Springer Actuarial Lecture Notes |
| Soggetto topico |
Actuarial science
Neural networks (Computer science) Statistics Actuarial Mathematics Mathematical Models of Cognitive Processes and Neural Networks Statistics in Engineering, Physics, Computer Science, Chemistry and Earth Sciences Statistics in Business, Management, Economics, Finance, Insurance |
| ISBN |
9783030575564
303057556X |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto | Chapter 1: Introductio -- Chapter 2 : Performance Evaluation -- Chapter 3 Regression Trees -- Chapter 4 Bagging Trees and Random Forests -- Chapter 5 Boosting Trees -- Chapter 6 Other Measures for Model Comparison. |
| Record Nr. | UNINA-9910484306203321 |
Denuit Michel
|
||
| Cham : , : Springer International Publishing : , : Imprint : Springer, , 2020 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Effective Statistical Learning Methods for Actuaries III [[electronic resource] ] : Neural Networks and Extensions / / by Michel Denuit, Donatien Hainaut, Julien Trufin
| Effective Statistical Learning Methods for Actuaries III [[electronic resource] ] : Neural Networks and Extensions / / by Michel Denuit, Donatien Hainaut, Julien Trufin |
| Autore | Denuit Michel |
| Edizione | [1st ed. 2019.] |
| Pubbl/distr/stampa | Cham : , : Springer International Publishing : , : Imprint : Springer, , 2019 |
| Descrizione fisica | 1 online resource (258 pages) : illustrations |
| Disciplina | 368.01 |
| Collana | Springer Actuarial Lecture Notes |
| Soggetto topico |
Actuarial science
Statistics Neural networks (Computer science) Actuarial Sciences Statistics for Business, Management, Economics, Finance, Insurance Mathematical Models of Cognitive Processes and Neural Networks |
| ISBN | 3-030-25827-0 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto | Preface. - Feed-forward Neural Networks. - Byesian Neural Networks and GLM. - Deep Neural Networks -- Dimension-Reduction with Forward Neural Nets Applied to Mortality. - Self-organizing Maps and k-means clusterin in non Life Insurance. - Ensemble of Neural Networks -- Gradient Boosting with Neural Networks. - Time Series Modelling with Neural Networks -- References. |
| Record Nr. | UNISA-996416847203316 |
Denuit Michel
|
||
| Cham : , : Springer International Publishing : , : Imprint : Springer, , 2019 | ||
| Lo trovi qui: Univ. di Salerno | ||
| ||
Effective Statistical Learning Methods for Actuaries III : Neural Networks and Extensions / / by Michel Denuit, Donatien Hainaut, Julien Trufin
| Effective Statistical Learning Methods for Actuaries III : Neural Networks and Extensions / / by Michel Denuit, Donatien Hainaut, Julien Trufin |
| Autore | Denuit Michel |
| Edizione | [1st ed. 2019.] |
| Pubbl/distr/stampa | Cham : , : Springer International Publishing : , : Imprint : Springer, , 2019 |
| Descrizione fisica | 1 online resource (258 pages) : illustrations |
| Disciplina | 368.01 |
| Collana | Springer Actuarial Lecture Notes |
| Soggetto topico |
Actuarial science
Statistics Neural networks (Computer science) Actuarial Mathematics Statistics in Business, Management, Economics, Finance, Insurance Mathematical Models of Cognitive Processes and Neural Networks |
| ISBN |
9783030258276
3030258270 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto | Preface. - Feed-forward Neural Networks. - Byesian Neural Networks and GLM. - Deep Neural Networks -- Dimension-Reduction with Forward Neural Nets Applied to Mortality. - Self-organizing Maps and k-means clusterin in non Life Insurance. - Ensemble of Neural Networks -- Gradient Boosting with Neural Networks. - Time Series Modelling with Neural Networks -- References. |
| Record Nr. | UNINA-9910349316603321 |
Denuit Michel
|
||
| Cham : , : Springer International Publishing : , : Imprint : Springer, , 2019 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Effective statistical learning methods for actuatries . II Tree-based methods and extensions / / Michel Denuit, Donatien Hainaut, Julien Trufin
| Effective statistical learning methods for actuatries . II Tree-based methods and extensions / / Michel Denuit, Donatien Hainaut, Julien Trufin |
| Autore | Denuit Michel |
| Edizione | [1st ed. 2020.] |
| Pubbl/distr/stampa | Cham, Switzerland : , : Springer, , [2020] |
| Descrizione fisica | 1 online resource (X, 228 p. 68 illus., 6 illus. in color.) |
| Disciplina | 519.536 |
| Collana | Springer Actuarial Lecture Notes |
| Soggetto topico |
Regression analysis
Actuarial science |
| ISBN | 3-030-57556-X |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto | Chapter 1: Introductio -- Chapter 2 : Performance Evaluation -- Chapter 3 Regression Trees -- Chapter 4 Bagging Trees and Random Forests -- Chapter 5 Boosting Trees -- Chapter 6 Other Measures for Model Comparison. |
| Record Nr. | UNISA-996418182603316 |
Denuit Michel
|
||
| Cham, Switzerland : , : Springer, , [2020] | ||
| Lo trovi qui: Univ. di Salerno | ||
| ||