top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
The mathematics of marine modelling : water, solute and particle dynamics in estuaries and shallow seas / / Henk Schuttelaars, Arnold Heemink, Eric Deleersnijder, editors
The mathematics of marine modelling : water, solute and particle dynamics in estuaries and shallow seas / / Henk Schuttelaars, Arnold Heemink, Eric Deleersnijder, editors
Pubbl/distr/stampa Cham, Switzerland : , : Springer, , [2022]
Descrizione fisica 1 online resource (324 pages)
Disciplina 551.460015118
Collana Mathematics of Planet Earth
Soggetto topico Oceanography - Mathematical models
Approximation theory
Mathematical analysis
Oceanografia
Models matemàtics
Teoria de l'aproximació
Anàlisi matemàtica
Soggetto genere / forma Llibres electrònics
ISBN 3-031-09559-6
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Intro -- Preface -- Contents -- Contributors -- 1 Basic Equations of Marine Flows -- 1.1 Mathematical Description of Fluids -- 1.1.1 Fluids as Continuous Media -- 1.1.2 Integral and Differential Formulations -- 1.1.3 Averaging of Turbulent Flows -- 1.2 Governing Equations -- 1.2.1 Volume Conservation -- 1.2.2 Salt Conservation -- 1.2.3 Heat Balance -- 1.2.4 Momentum Balance -- 1.2.5 Common Formulations and Closures -- 1.3 Summary -- References -- 2 Water Waves in Isotropic and Anisotropic Media: A comparison -- 2.1 Introduction -- 2.2 Gravity Waves -- 2.2.1 Surface Gravity Waves in Homogeneous Fluids -- 2.2.2 Gravity Waves in Heterogeneous Media -- 2.3 Inertial Waves -- 2.3.1 Waves in Shear Flows -- 2.3.2 Waves in Rotating Basins -- 2.3.3 Three-dimensional Effects -- 2.4 Discussion -- 2.4.1 The Linear Shear Flow as `Problematic' Equilibrium -- 2.4.2 Waves in Anisotropic Media -- 2.4.3 Mixing Due to Wave Focusing and Mean Flows -- 2.5 Conclusion -- References -- 3 A Review of Nonlinear Boussinesq-Type Models for Coastal Ocean Modeling -- 3.1 Introduction -- 3.2 The Water Wave Problem -- 3.2.1 Dispersive Properties of the Linear Waves -- 3.2.2 Scaling of Variables and Operators -- 3.2.3 Nondimensionalization of Equations -- 3.2.4 Green-Naghdi Equation -- 3.3 A Finite Element Discretization of the Green-Naghdi Equation -- 3.3.1 Notation -- 3.3.2 Functional Setting -- 3.3.3 Variational Formulation and Solution Procedure -- 3.4 Numerical Results -- 3.5 Conclusions -- References -- 4 Tides in Coastal Seas. Influence of Topography and Bottom Friction -- 4.1 Introduction -- 4.2 Model Formulation -- 4.3 Fundamental Wave Solutions -- 4.3.1 Derivation with Klein-Gordon Equation -- 4.3.2 Kelvin Wave -- 4.3.3 Poincaré Waves -- 4.3.4 Wave Solutions with a Transverse Topographic Step -- 4.4 Amphidromic Patterns in Semi-enclosed Basins.
4.4.1 Superposition of Two Kelvin Waves -- 4.4.2 Solution to Extended Taylor Problem -- 4.4.3 Application to Basins Around the World -- 4.5 Discussion -- 4.6 Conclusions -- References -- 5 Variational Water-Wave Modeling: From Deep Water to Beaches -- 5.1 Introduction -- 5.2 Derivation of Luke's Variational Principle -- 5.3 Transformed Luke's/Miles' Variational Principles with Wavemaker -- 5.3.1 FEM and Mesh Motion -- 5.3.2 Numerical Results: Comparison with Wave-Tank Experiments -- 5.4 Coupling Water Waves to Shallow-Water Beach Hydraulics -- 5.4.1 Numerical Results: Damping of Waves on the Beach -- 5.5 Summary and Conclusions -- References -- 6 Quasi-2D Turbulence in Shallow Fluid Layers -- 6.1 Introduction -- 6.2 Two-Dimensional Turbulence -- 6.2.1 Inertial Ranges in 2D Turbulence -- 6.2.2 2D Turbulence: The Early Years -- 6.2.3 Coherent Structures and 2D Turbulence -- 6.3 2D Turbulence in Square, Rectangular and Circular Domains -- 6.3.1 Simulations of 2D Turbulence in Domains with No-Slip Walls -- 6.3.2 Quasi-Steady Final States: Laboratory Experiments -- 6.3.3 Forced 2D Turbulence on Confined Domains -- 6.4 Interaction of Vortices with Walls -- 6.4.1 No-Slip Walls as Vorticity Sources -- 6.4.2 Vorticity Production by Dipole-Wall Collisions -- 6.5 Review of 2D Turbulence Experiments in Shallow Fluids -- 6.5.1 Laboratory Experiments in Shallow Fluid Layers -- 6.5.2 2D Turbulence with Rayleigh Friction -- 6.5.3 Secondary Flows in Quasi-2D Turbulence in Thin Fluid Layers -- 6.5.4 Concluding Remarks -- 6.6 Summary -- References -- 7 Turbulent Dispersion -- 7.1 Introduction -- 7.2 Model Requirements -- 7.3 Model Development -- 7.4 Reduction to One Dimension with Boundaries -- 7.5 Application to Dispersion in Turbulent Jets -- 7.5.1 Turbulent Round Jet -- 7.5.2 Turbulent Planar Jet -- 7.6 Turbulent Flow along a Wall-The Logarithmic Velocity Profile.
7.7 Application to the Marine Ekman Layer -- 7.7.1 Surface Ekman Layer -- 7.7.2 Bottom Ekman Layer -- 7.8 Conclusions -- References -- 8 Spreading and Mixing in Near-Field River Plumes -- 8.1 Introduction -- 8.2 Dynamical Regions -- 8.3 A Simple Near-Field Plume Model -- 8.4 Complications to The Simple Plume Model -- 8.4.1 Local Mixing Parameterization -- 8.4.2 Plume Frontal Mixing -- 8.4.3 Rotation and Return to Geostrophy -- 8.5 Conclusions -- References -- 9 Lagrangian Modelling of Transport Phenomena Using Stochastic Differential Equations -- 9.1 Introduction -- 9.2 Stochastic Differential Equations -- 9.2.1 Introduction -- 9.2.2 Îto Stochastic Integrals -- 9.2.3 Îto Stochastic Differential Equations -- 9.2.4 Îto's Differentiation Rule -- 9.2.5 Stratonovich Stochastic Differential Equations -- 9.2.6 Fokker-Planck Equation -- 9.3 Particle Models for Marine Transport Problems -- 9.4 Numerical Approximation of Stochastic Differential Equations -- 9.5 Test Cases for Marine Transport Problems -- 9.5.1 Simple Vertical Diffusion -- 9.5.2 One Dimensional Water Column Including a Pycnocline -- 9.5.3 Multidimensional Diffusion in an Unbounded Domain -- 9.6 Conclusion -- References -- 10 Morphodynamic Modelling in Marine Environments: Model Formulation and Solution Techniques -- 10.1 Introduction -- 10.2 Morphodynamic Modelling Approaches -- 10.3 Process-Based Models -- 10.3.1 Mathematical Formulation of Simulation Models -- 10.3.2 Mathematical Formulation of Exploratory Models -- 10.4 Solution Procedure -- 10.4.1 Initial Value Approach -- 10.4.2 Bifurcation Approach -- 10.5 Example: Morphodynamics of Tidal Inlet Systems -- 10.5.1 Introduction -- 10.5.2 Cross-Sectionally Averaged Morphodynamic Equilibria -- 10.5.3 Depth-Averaged Morphodynamic Equilibria -- 10.6 Summary and Conclusions -- References.
11 Wetting and Drying Procedures for Shallow Water Simulations -- 11.1 Introduction -- 11.2 Governing Equations -- 11.3 Space Discretization -- 11.3.1 Finite Volume Methods -- 11.3.2 Discontinuous Galerkin Schemes -- 11.4 Time Discretization -- 11.4.1 Explicit Time Integration -- 11.4.2 Implicit Time Integration -- 11.5 Concluding Remarks -- References -- Appendix Index -- Index.
Record Nr. UNISA-996499866503316
Cham, Switzerland : , : Springer, , [2022]
Materiale a stampa
Lo trovi qui: Univ. di Salerno
Opac: Controlla la disponibilità qui
The mathematics of marine modelling : water, solute and particle dynamics in estuaries and shallow seas / / Henk Schuttelaars, Arnold Heemink, Eric Deleersnijder, editors
The mathematics of marine modelling : water, solute and particle dynamics in estuaries and shallow seas / / Henk Schuttelaars, Arnold Heemink, Eric Deleersnijder, editors
Pubbl/distr/stampa Cham, Switzerland : , : Springer, , [2022]
Descrizione fisica 1 online resource (324 pages)
Disciplina 551.460015118
Collana Mathematics of Planet Earth
Soggetto topico Oceanography - Mathematical models
Approximation theory
Mathematical analysis
Oceanografia
Models matemàtics
Teoria de l'aproximació
Anàlisi matemàtica
Soggetto genere / forma Llibres electrònics
ISBN 3-031-09559-6
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Intro -- Preface -- Contents -- Contributors -- 1 Basic Equations of Marine Flows -- 1.1 Mathematical Description of Fluids -- 1.1.1 Fluids as Continuous Media -- 1.1.2 Integral and Differential Formulations -- 1.1.3 Averaging of Turbulent Flows -- 1.2 Governing Equations -- 1.2.1 Volume Conservation -- 1.2.2 Salt Conservation -- 1.2.3 Heat Balance -- 1.2.4 Momentum Balance -- 1.2.5 Common Formulations and Closures -- 1.3 Summary -- References -- 2 Water Waves in Isotropic and Anisotropic Media: A comparison -- 2.1 Introduction -- 2.2 Gravity Waves -- 2.2.1 Surface Gravity Waves in Homogeneous Fluids -- 2.2.2 Gravity Waves in Heterogeneous Media -- 2.3 Inertial Waves -- 2.3.1 Waves in Shear Flows -- 2.3.2 Waves in Rotating Basins -- 2.3.3 Three-dimensional Effects -- 2.4 Discussion -- 2.4.1 The Linear Shear Flow as `Problematic' Equilibrium -- 2.4.2 Waves in Anisotropic Media -- 2.4.3 Mixing Due to Wave Focusing and Mean Flows -- 2.5 Conclusion -- References -- 3 A Review of Nonlinear Boussinesq-Type Models for Coastal Ocean Modeling -- 3.1 Introduction -- 3.2 The Water Wave Problem -- 3.2.1 Dispersive Properties of the Linear Waves -- 3.2.2 Scaling of Variables and Operators -- 3.2.3 Nondimensionalization of Equations -- 3.2.4 Green-Naghdi Equation -- 3.3 A Finite Element Discretization of the Green-Naghdi Equation -- 3.3.1 Notation -- 3.3.2 Functional Setting -- 3.3.3 Variational Formulation and Solution Procedure -- 3.4 Numerical Results -- 3.5 Conclusions -- References -- 4 Tides in Coastal Seas. Influence of Topography and Bottom Friction -- 4.1 Introduction -- 4.2 Model Formulation -- 4.3 Fundamental Wave Solutions -- 4.3.1 Derivation with Klein-Gordon Equation -- 4.3.2 Kelvin Wave -- 4.3.3 Poincaré Waves -- 4.3.4 Wave Solutions with a Transverse Topographic Step -- 4.4 Amphidromic Patterns in Semi-enclosed Basins.
4.4.1 Superposition of Two Kelvin Waves -- 4.4.2 Solution to Extended Taylor Problem -- 4.4.3 Application to Basins Around the World -- 4.5 Discussion -- 4.6 Conclusions -- References -- 5 Variational Water-Wave Modeling: From Deep Water to Beaches -- 5.1 Introduction -- 5.2 Derivation of Luke's Variational Principle -- 5.3 Transformed Luke's/Miles' Variational Principles with Wavemaker -- 5.3.1 FEM and Mesh Motion -- 5.3.2 Numerical Results: Comparison with Wave-Tank Experiments -- 5.4 Coupling Water Waves to Shallow-Water Beach Hydraulics -- 5.4.1 Numerical Results: Damping of Waves on the Beach -- 5.5 Summary and Conclusions -- References -- 6 Quasi-2D Turbulence in Shallow Fluid Layers -- 6.1 Introduction -- 6.2 Two-Dimensional Turbulence -- 6.2.1 Inertial Ranges in 2D Turbulence -- 6.2.2 2D Turbulence: The Early Years -- 6.2.3 Coherent Structures and 2D Turbulence -- 6.3 2D Turbulence in Square, Rectangular and Circular Domains -- 6.3.1 Simulations of 2D Turbulence in Domains with No-Slip Walls -- 6.3.2 Quasi-Steady Final States: Laboratory Experiments -- 6.3.3 Forced 2D Turbulence on Confined Domains -- 6.4 Interaction of Vortices with Walls -- 6.4.1 No-Slip Walls as Vorticity Sources -- 6.4.2 Vorticity Production by Dipole-Wall Collisions -- 6.5 Review of 2D Turbulence Experiments in Shallow Fluids -- 6.5.1 Laboratory Experiments in Shallow Fluid Layers -- 6.5.2 2D Turbulence with Rayleigh Friction -- 6.5.3 Secondary Flows in Quasi-2D Turbulence in Thin Fluid Layers -- 6.5.4 Concluding Remarks -- 6.6 Summary -- References -- 7 Turbulent Dispersion -- 7.1 Introduction -- 7.2 Model Requirements -- 7.3 Model Development -- 7.4 Reduction to One Dimension with Boundaries -- 7.5 Application to Dispersion in Turbulent Jets -- 7.5.1 Turbulent Round Jet -- 7.5.2 Turbulent Planar Jet -- 7.6 Turbulent Flow along a Wall-The Logarithmic Velocity Profile.
7.7 Application to the Marine Ekman Layer -- 7.7.1 Surface Ekman Layer -- 7.7.2 Bottom Ekman Layer -- 7.8 Conclusions -- References -- 8 Spreading and Mixing in Near-Field River Plumes -- 8.1 Introduction -- 8.2 Dynamical Regions -- 8.3 A Simple Near-Field Plume Model -- 8.4 Complications to The Simple Plume Model -- 8.4.1 Local Mixing Parameterization -- 8.4.2 Plume Frontal Mixing -- 8.4.3 Rotation and Return to Geostrophy -- 8.5 Conclusions -- References -- 9 Lagrangian Modelling of Transport Phenomena Using Stochastic Differential Equations -- 9.1 Introduction -- 9.2 Stochastic Differential Equations -- 9.2.1 Introduction -- 9.2.2 Îto Stochastic Integrals -- 9.2.3 Îto Stochastic Differential Equations -- 9.2.4 Îto's Differentiation Rule -- 9.2.5 Stratonovich Stochastic Differential Equations -- 9.2.6 Fokker-Planck Equation -- 9.3 Particle Models for Marine Transport Problems -- 9.4 Numerical Approximation of Stochastic Differential Equations -- 9.5 Test Cases for Marine Transport Problems -- 9.5.1 Simple Vertical Diffusion -- 9.5.2 One Dimensional Water Column Including a Pycnocline -- 9.5.3 Multidimensional Diffusion in an Unbounded Domain -- 9.6 Conclusion -- References -- 10 Morphodynamic Modelling in Marine Environments: Model Formulation and Solution Techniques -- 10.1 Introduction -- 10.2 Morphodynamic Modelling Approaches -- 10.3 Process-Based Models -- 10.3.1 Mathematical Formulation of Simulation Models -- 10.3.2 Mathematical Formulation of Exploratory Models -- 10.4 Solution Procedure -- 10.4.1 Initial Value Approach -- 10.4.2 Bifurcation Approach -- 10.5 Example: Morphodynamics of Tidal Inlet Systems -- 10.5.1 Introduction -- 10.5.2 Cross-Sectionally Averaged Morphodynamic Equilibria -- 10.5.3 Depth-Averaged Morphodynamic Equilibria -- 10.6 Summary and Conclusions -- References.
11 Wetting and Drying Procedures for Shallow Water Simulations -- 11.1 Introduction -- 11.2 Governing Equations -- 11.3 Space Discretization -- 11.3.1 Finite Volume Methods -- 11.3.2 Discontinuous Galerkin Schemes -- 11.4 Time Discretization -- 11.4.1 Explicit Time Integration -- 11.4.2 Implicit Time Integration -- 11.5 Concluding Remarks -- References -- Appendix Index -- Index.
Record Nr. UNINA-9910633914703321
Cham, Switzerland : , : Springer, , [2022]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Tracer and Timescale Methods for Passive and Reactive Transport in Fluid Flows
Tracer and Timescale Methods for Passive and Reactive Transport in Fluid Flows
Autore Deleersnijder Eric
Pubbl/distr/stampa Basel, : MDPI - Multidisciplinary Digital Publishing Institute, 2022
Descrizione fisica 1 online resource (364 p.)
Soggetto topico Biology, life sciences
Research & information: general
Soggetto non controllato ADCP measurement
age
age distribution function
antimony 125 (125Sb)
biogeochemical
Biscay Bay
boundary conditions
CART
coastal
coupled wave-ocean models
data collection
Delft3D
density current
diagnostic timescales
dispersion
ecological
English Channel
estuary
exposure time
floating structures
floodplain
flushing time
geophysical and environmental fluid flows
hydrodynamic
hydrodynamic model
hydrogeological tracer test
interpretation methods
kinetics
Lagrangian transport modelling
macro-tidal
Mahakam Delta
marina
meteorological influence
model skills
modeling
n/a
North Sea
numerical modeling
ocean drifters
partial differential equations
partitioning
passive tracers
Pearl River Estuary
radionuclide
reactive tracers
reactive transport
residence time
return coefficient
return-flow
Reynolds stress
Sacramento-San Joaquin Delta
San Francisco Estuary
shallow lake
shallow reservoir
source water fingerprinting
stable isotopes
sub-basins
tailor-made tracer design
terrestrial dissolved substances
Three Gorges Reservoir
tidal hydrodynamics
timescale
tracer
transport
transport process
transport time scales
transport timescales
tributary bay
tritium (3H)
turbulence
water age
water level regulation
water renewal
wave bias
wave-induced processes
wind influence
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910576873603321
Deleersnijder Eric  
Basel, : MDPI - Multidisciplinary Digital Publishing Institute, 2022
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui