The mathematics of marine modelling : water, solute and particle dynamics in estuaries and shallow seas / / Henk Schuttelaars, Arnold Heemink, Eric Deleersnijder, editors
| The mathematics of marine modelling : water, solute and particle dynamics in estuaries and shallow seas / / Henk Schuttelaars, Arnold Heemink, Eric Deleersnijder, editors |
| Pubbl/distr/stampa | Cham, Switzerland : , : Springer, , [2022] |
| Descrizione fisica | 1 online resource (324 pages) |
| Disciplina | 551.460015118 |
| Collana | Mathematics of Planet Earth |
| Soggetto topico |
Oceanography - Mathematical models
Approximation theory Mathematical analysis Oceanografia Models matemàtics Teoria de l'aproximació Anàlisi matemàtica |
| Soggetto genere / forma | Llibres electrònics |
| ISBN | 3-031-09559-6 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto |
Intro -- Preface -- Contents -- Contributors -- 1 Basic Equations of Marine Flows -- 1.1 Mathematical Description of Fluids -- 1.1.1 Fluids as Continuous Media -- 1.1.2 Integral and Differential Formulations -- 1.1.3 Averaging of Turbulent Flows -- 1.2 Governing Equations -- 1.2.1 Volume Conservation -- 1.2.2 Salt Conservation -- 1.2.3 Heat Balance -- 1.2.4 Momentum Balance -- 1.2.5 Common Formulations and Closures -- 1.3 Summary -- References -- 2 Water Waves in Isotropic and Anisotropic Media: A comparison -- 2.1 Introduction -- 2.2 Gravity Waves -- 2.2.1 Surface Gravity Waves in Homogeneous Fluids -- 2.2.2 Gravity Waves in Heterogeneous Media -- 2.3 Inertial Waves -- 2.3.1 Waves in Shear Flows -- 2.3.2 Waves in Rotating Basins -- 2.3.3 Three-dimensional Effects -- 2.4 Discussion -- 2.4.1 The Linear Shear Flow as `Problematic' Equilibrium -- 2.4.2 Waves in Anisotropic Media -- 2.4.3 Mixing Due to Wave Focusing and Mean Flows -- 2.5 Conclusion -- References -- 3 A Review of Nonlinear Boussinesq-Type Models for Coastal Ocean Modeling -- 3.1 Introduction -- 3.2 The Water Wave Problem -- 3.2.1 Dispersive Properties of the Linear Waves -- 3.2.2 Scaling of Variables and Operators -- 3.2.3 Nondimensionalization of Equations -- 3.2.4 Green-Naghdi Equation -- 3.3 A Finite Element Discretization of the Green-Naghdi Equation -- 3.3.1 Notation -- 3.3.2 Functional Setting -- 3.3.3 Variational Formulation and Solution Procedure -- 3.4 Numerical Results -- 3.5 Conclusions -- References -- 4 Tides in Coastal Seas. Influence of Topography and Bottom Friction -- 4.1 Introduction -- 4.2 Model Formulation -- 4.3 Fundamental Wave Solutions -- 4.3.1 Derivation with Klein-Gordon Equation -- 4.3.2 Kelvin Wave -- 4.3.3 Poincaré Waves -- 4.3.4 Wave Solutions with a Transverse Topographic Step -- 4.4 Amphidromic Patterns in Semi-enclosed Basins.
4.4.1 Superposition of Two Kelvin Waves -- 4.4.2 Solution to Extended Taylor Problem -- 4.4.3 Application to Basins Around the World -- 4.5 Discussion -- 4.6 Conclusions -- References -- 5 Variational Water-Wave Modeling: From Deep Water to Beaches -- 5.1 Introduction -- 5.2 Derivation of Luke's Variational Principle -- 5.3 Transformed Luke's/Miles' Variational Principles with Wavemaker -- 5.3.1 FEM and Mesh Motion -- 5.3.2 Numerical Results: Comparison with Wave-Tank Experiments -- 5.4 Coupling Water Waves to Shallow-Water Beach Hydraulics -- 5.4.1 Numerical Results: Damping of Waves on the Beach -- 5.5 Summary and Conclusions -- References -- 6 Quasi-2D Turbulence in Shallow Fluid Layers -- 6.1 Introduction -- 6.2 Two-Dimensional Turbulence -- 6.2.1 Inertial Ranges in 2D Turbulence -- 6.2.2 2D Turbulence: The Early Years -- 6.2.3 Coherent Structures and 2D Turbulence -- 6.3 2D Turbulence in Square, Rectangular and Circular Domains -- 6.3.1 Simulations of 2D Turbulence in Domains with No-Slip Walls -- 6.3.2 Quasi-Steady Final States: Laboratory Experiments -- 6.3.3 Forced 2D Turbulence on Confined Domains -- 6.4 Interaction of Vortices with Walls -- 6.4.1 No-Slip Walls as Vorticity Sources -- 6.4.2 Vorticity Production by Dipole-Wall Collisions -- 6.5 Review of 2D Turbulence Experiments in Shallow Fluids -- 6.5.1 Laboratory Experiments in Shallow Fluid Layers -- 6.5.2 2D Turbulence with Rayleigh Friction -- 6.5.3 Secondary Flows in Quasi-2D Turbulence in Thin Fluid Layers -- 6.5.4 Concluding Remarks -- 6.6 Summary -- References -- 7 Turbulent Dispersion -- 7.1 Introduction -- 7.2 Model Requirements -- 7.3 Model Development -- 7.4 Reduction to One Dimension with Boundaries -- 7.5 Application to Dispersion in Turbulent Jets -- 7.5.1 Turbulent Round Jet -- 7.5.2 Turbulent Planar Jet -- 7.6 Turbulent Flow along a Wall-The Logarithmic Velocity Profile. 7.7 Application to the Marine Ekman Layer -- 7.7.1 Surface Ekman Layer -- 7.7.2 Bottom Ekman Layer -- 7.8 Conclusions -- References -- 8 Spreading and Mixing in Near-Field River Plumes -- 8.1 Introduction -- 8.2 Dynamical Regions -- 8.3 A Simple Near-Field Plume Model -- 8.4 Complications to The Simple Plume Model -- 8.4.1 Local Mixing Parameterization -- 8.4.2 Plume Frontal Mixing -- 8.4.3 Rotation and Return to Geostrophy -- 8.5 Conclusions -- References -- 9 Lagrangian Modelling of Transport Phenomena Using Stochastic Differential Equations -- 9.1 Introduction -- 9.2 Stochastic Differential Equations -- 9.2.1 Introduction -- 9.2.2 Îto Stochastic Integrals -- 9.2.3 Îto Stochastic Differential Equations -- 9.2.4 Îto's Differentiation Rule -- 9.2.5 Stratonovich Stochastic Differential Equations -- 9.2.6 Fokker-Planck Equation -- 9.3 Particle Models for Marine Transport Problems -- 9.4 Numerical Approximation of Stochastic Differential Equations -- 9.5 Test Cases for Marine Transport Problems -- 9.5.1 Simple Vertical Diffusion -- 9.5.2 One Dimensional Water Column Including a Pycnocline -- 9.5.3 Multidimensional Diffusion in an Unbounded Domain -- 9.6 Conclusion -- References -- 10 Morphodynamic Modelling in Marine Environments: Model Formulation and Solution Techniques -- 10.1 Introduction -- 10.2 Morphodynamic Modelling Approaches -- 10.3 Process-Based Models -- 10.3.1 Mathematical Formulation of Simulation Models -- 10.3.2 Mathematical Formulation of Exploratory Models -- 10.4 Solution Procedure -- 10.4.1 Initial Value Approach -- 10.4.2 Bifurcation Approach -- 10.5 Example: Morphodynamics of Tidal Inlet Systems -- 10.5.1 Introduction -- 10.5.2 Cross-Sectionally Averaged Morphodynamic Equilibria -- 10.5.3 Depth-Averaged Morphodynamic Equilibria -- 10.6 Summary and Conclusions -- References. 11 Wetting and Drying Procedures for Shallow Water Simulations -- 11.1 Introduction -- 11.2 Governing Equations -- 11.3 Space Discretization -- 11.3.1 Finite Volume Methods -- 11.3.2 Discontinuous Galerkin Schemes -- 11.4 Time Discretization -- 11.4.1 Explicit Time Integration -- 11.4.2 Implicit Time Integration -- 11.5 Concluding Remarks -- References -- Appendix Index -- Index. |
| Record Nr. | UNISA-996499866503316 |
| Cham, Switzerland : , : Springer, , [2022] | ||
| Lo trovi qui: Univ. di Salerno | ||
| ||
The mathematics of marine modelling : water, solute and particle dynamics in estuaries and shallow seas / / Henk Schuttelaars, Arnold Heemink, Eric Deleersnijder, editors
| The mathematics of marine modelling : water, solute and particle dynamics in estuaries and shallow seas / / Henk Schuttelaars, Arnold Heemink, Eric Deleersnijder, editors |
| Pubbl/distr/stampa | Cham, Switzerland : , : Springer, , [2022] |
| Descrizione fisica | 1 online resource (324 pages) |
| Disciplina | 551.460015118 |
| Collana | Mathematics of Planet Earth |
| Soggetto topico |
Oceanography - Mathematical models
Approximation theory Mathematical analysis Oceanografia Models matemàtics Teoria de l'aproximació Anàlisi matemàtica |
| Soggetto genere / forma | Llibres electrònics |
| ISBN | 3-031-09559-6 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto |
Intro -- Preface -- Contents -- Contributors -- 1 Basic Equations of Marine Flows -- 1.1 Mathematical Description of Fluids -- 1.1.1 Fluids as Continuous Media -- 1.1.2 Integral and Differential Formulations -- 1.1.3 Averaging of Turbulent Flows -- 1.2 Governing Equations -- 1.2.1 Volume Conservation -- 1.2.2 Salt Conservation -- 1.2.3 Heat Balance -- 1.2.4 Momentum Balance -- 1.2.5 Common Formulations and Closures -- 1.3 Summary -- References -- 2 Water Waves in Isotropic and Anisotropic Media: A comparison -- 2.1 Introduction -- 2.2 Gravity Waves -- 2.2.1 Surface Gravity Waves in Homogeneous Fluids -- 2.2.2 Gravity Waves in Heterogeneous Media -- 2.3 Inertial Waves -- 2.3.1 Waves in Shear Flows -- 2.3.2 Waves in Rotating Basins -- 2.3.3 Three-dimensional Effects -- 2.4 Discussion -- 2.4.1 The Linear Shear Flow as `Problematic' Equilibrium -- 2.4.2 Waves in Anisotropic Media -- 2.4.3 Mixing Due to Wave Focusing and Mean Flows -- 2.5 Conclusion -- References -- 3 A Review of Nonlinear Boussinesq-Type Models for Coastal Ocean Modeling -- 3.1 Introduction -- 3.2 The Water Wave Problem -- 3.2.1 Dispersive Properties of the Linear Waves -- 3.2.2 Scaling of Variables and Operators -- 3.2.3 Nondimensionalization of Equations -- 3.2.4 Green-Naghdi Equation -- 3.3 A Finite Element Discretization of the Green-Naghdi Equation -- 3.3.1 Notation -- 3.3.2 Functional Setting -- 3.3.3 Variational Formulation and Solution Procedure -- 3.4 Numerical Results -- 3.5 Conclusions -- References -- 4 Tides in Coastal Seas. Influence of Topography and Bottom Friction -- 4.1 Introduction -- 4.2 Model Formulation -- 4.3 Fundamental Wave Solutions -- 4.3.1 Derivation with Klein-Gordon Equation -- 4.3.2 Kelvin Wave -- 4.3.3 Poincaré Waves -- 4.3.4 Wave Solutions with a Transverse Topographic Step -- 4.4 Amphidromic Patterns in Semi-enclosed Basins.
4.4.1 Superposition of Two Kelvin Waves -- 4.4.2 Solution to Extended Taylor Problem -- 4.4.3 Application to Basins Around the World -- 4.5 Discussion -- 4.6 Conclusions -- References -- 5 Variational Water-Wave Modeling: From Deep Water to Beaches -- 5.1 Introduction -- 5.2 Derivation of Luke's Variational Principle -- 5.3 Transformed Luke's/Miles' Variational Principles with Wavemaker -- 5.3.1 FEM and Mesh Motion -- 5.3.2 Numerical Results: Comparison with Wave-Tank Experiments -- 5.4 Coupling Water Waves to Shallow-Water Beach Hydraulics -- 5.4.1 Numerical Results: Damping of Waves on the Beach -- 5.5 Summary and Conclusions -- References -- 6 Quasi-2D Turbulence in Shallow Fluid Layers -- 6.1 Introduction -- 6.2 Two-Dimensional Turbulence -- 6.2.1 Inertial Ranges in 2D Turbulence -- 6.2.2 2D Turbulence: The Early Years -- 6.2.3 Coherent Structures and 2D Turbulence -- 6.3 2D Turbulence in Square, Rectangular and Circular Domains -- 6.3.1 Simulations of 2D Turbulence in Domains with No-Slip Walls -- 6.3.2 Quasi-Steady Final States: Laboratory Experiments -- 6.3.3 Forced 2D Turbulence on Confined Domains -- 6.4 Interaction of Vortices with Walls -- 6.4.1 No-Slip Walls as Vorticity Sources -- 6.4.2 Vorticity Production by Dipole-Wall Collisions -- 6.5 Review of 2D Turbulence Experiments in Shallow Fluids -- 6.5.1 Laboratory Experiments in Shallow Fluid Layers -- 6.5.2 2D Turbulence with Rayleigh Friction -- 6.5.3 Secondary Flows in Quasi-2D Turbulence in Thin Fluid Layers -- 6.5.4 Concluding Remarks -- 6.6 Summary -- References -- 7 Turbulent Dispersion -- 7.1 Introduction -- 7.2 Model Requirements -- 7.3 Model Development -- 7.4 Reduction to One Dimension with Boundaries -- 7.5 Application to Dispersion in Turbulent Jets -- 7.5.1 Turbulent Round Jet -- 7.5.2 Turbulent Planar Jet -- 7.6 Turbulent Flow along a Wall-The Logarithmic Velocity Profile. 7.7 Application to the Marine Ekman Layer -- 7.7.1 Surface Ekman Layer -- 7.7.2 Bottom Ekman Layer -- 7.8 Conclusions -- References -- 8 Spreading and Mixing in Near-Field River Plumes -- 8.1 Introduction -- 8.2 Dynamical Regions -- 8.3 A Simple Near-Field Plume Model -- 8.4 Complications to The Simple Plume Model -- 8.4.1 Local Mixing Parameterization -- 8.4.2 Plume Frontal Mixing -- 8.4.3 Rotation and Return to Geostrophy -- 8.5 Conclusions -- References -- 9 Lagrangian Modelling of Transport Phenomena Using Stochastic Differential Equations -- 9.1 Introduction -- 9.2 Stochastic Differential Equations -- 9.2.1 Introduction -- 9.2.2 Îto Stochastic Integrals -- 9.2.3 Îto Stochastic Differential Equations -- 9.2.4 Îto's Differentiation Rule -- 9.2.5 Stratonovich Stochastic Differential Equations -- 9.2.6 Fokker-Planck Equation -- 9.3 Particle Models for Marine Transport Problems -- 9.4 Numerical Approximation of Stochastic Differential Equations -- 9.5 Test Cases for Marine Transport Problems -- 9.5.1 Simple Vertical Diffusion -- 9.5.2 One Dimensional Water Column Including a Pycnocline -- 9.5.3 Multidimensional Diffusion in an Unbounded Domain -- 9.6 Conclusion -- References -- 10 Morphodynamic Modelling in Marine Environments: Model Formulation and Solution Techniques -- 10.1 Introduction -- 10.2 Morphodynamic Modelling Approaches -- 10.3 Process-Based Models -- 10.3.1 Mathematical Formulation of Simulation Models -- 10.3.2 Mathematical Formulation of Exploratory Models -- 10.4 Solution Procedure -- 10.4.1 Initial Value Approach -- 10.4.2 Bifurcation Approach -- 10.5 Example: Morphodynamics of Tidal Inlet Systems -- 10.5.1 Introduction -- 10.5.2 Cross-Sectionally Averaged Morphodynamic Equilibria -- 10.5.3 Depth-Averaged Morphodynamic Equilibria -- 10.6 Summary and Conclusions -- References. 11 Wetting and Drying Procedures for Shallow Water Simulations -- 11.1 Introduction -- 11.2 Governing Equations -- 11.3 Space Discretization -- 11.3.1 Finite Volume Methods -- 11.3.2 Discontinuous Galerkin Schemes -- 11.4 Time Discretization -- 11.4.1 Explicit Time Integration -- 11.4.2 Implicit Time Integration -- 11.5 Concluding Remarks -- References -- Appendix Index -- Index. |
| Record Nr. | UNINA-9910633914703321 |
| Cham, Switzerland : , : Springer, , [2022] | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Tracer and Timescale Methods for Passive and Reactive Transport in Fluid Flows
| Tracer and Timescale Methods for Passive and Reactive Transport in Fluid Flows |
| Autore | Deleersnijder Eric |
| Pubbl/distr/stampa | Basel, : MDPI - Multidisciplinary Digital Publishing Institute, 2022 |
| Descrizione fisica | 1 online resource (364 p.) |
| Soggetto topico |
Biology, life sciences
Research & information: general |
| Soggetto non controllato |
ADCP measurement
age age distribution function antimony 125 (125Sb) biogeochemical Biscay Bay boundary conditions CART coastal coupled wave-ocean models data collection Delft3D density current diagnostic timescales dispersion ecological English Channel estuary exposure time floating structures floodplain flushing time geophysical and environmental fluid flows hydrodynamic hydrodynamic model hydrogeological tracer test interpretation methods kinetics Lagrangian transport modelling macro-tidal Mahakam Delta marina meteorological influence model skills modeling n/a North Sea numerical modeling ocean drifters partial differential equations partitioning passive tracers Pearl River Estuary radionuclide reactive tracers reactive transport residence time return coefficient return-flow Reynolds stress Sacramento-San Joaquin Delta San Francisco Estuary shallow lake shallow reservoir source water fingerprinting stable isotopes sub-basins tailor-made tracer design terrestrial dissolved substances Three Gorges Reservoir tidal hydrodynamics timescale tracer transport transport process transport time scales transport timescales tributary bay tritium (3H) turbulence water age water level regulation water renewal wave bias wave-induced processes wind influence |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Record Nr. | UNINA-9910576873603321 |
Deleersnijder Eric
|
||
| Basel, : MDPI - Multidisciplinary Digital Publishing Institute, 2022 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||