top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Advances in Machine Learning for Big Data Analysis / / edited by Satchidananda Dehuri, Yen-Wei Chen
Advances in Machine Learning for Big Data Analysis / / edited by Satchidananda Dehuri, Yen-Wei Chen
Edizione [1st ed. 2022.]
Pubbl/distr/stampa Singapore : , : Springer Nature Singapore : , : Imprint : Springer, , 2022
Descrizione fisica 1 online resource (xix, 239 pages) : illustrations (some color), charts
Disciplina 780
Collana Intelligent Systems Reference Library
Soggetto topico Computational intelligence
Machine learning
Artificial intelligence - Data processing
Big data
Computational Intelligence
Machine Learning
Data Science
Big Data
ISBN 9789811689291
9811689296
9789811689307
981168930X
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Deep Learning for Supervised Learning -- Deep Learning for Unsupervised Learning -- Support Vector Machine for Regression -- Support Vector Machine for Classification -- Decision Tree for Regression -- Higher Order Neural Networks -- Competitive Learning -- Semi-supervised Learning -- Multi-objective Optimization Techniques -- Techniques for Feature Selection/Extraction -- Techniques for Task Relevant Big Data Analysis -- Techniques for Post Processing Task in Big Data Analysis -- Customer Relationship Management.
Record Nr. UNINA-9910743352903321
Singapore : , : Springer Nature Singapore : , : Imprint : Springer, , 2022
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Biologically inspired techniques in many criteria decision making : proceedings of BITMDM 2021 / / edited by Satchidananda Dehuri [and three others]
Biologically inspired techniques in many criteria decision making : proceedings of BITMDM 2021 / / edited by Satchidananda Dehuri [and three others]
Pubbl/distr/stampa Gateway East, Singapore : , : Springer, , [2022]
Descrizione fisica 1 online resource (718 pages)
Disciplina 658.403
Collana Smart Innovation, Systems and Technologies
Soggetto topico Bioinformatics
Artificial intelligence
Data mining
ISBN 981-16-8738-2
981-16-8739-0
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910743225103321
Gateway East, Singapore : , : Springer, , [2022]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Biologically Inspired Techniques in Many Criteria Decision-Making : Proceedings of BITMDM 2024 / / edited by Satchidananda Dehuri, Sujata Dash, Ruppa K. Thulasiram, Rohen H. Singh, Margarita Favorskaya
Biologically Inspired Techniques in Many Criteria Decision-Making : Proceedings of BITMDM 2024 / / edited by Satchidananda Dehuri, Sujata Dash, Ruppa K. Thulasiram, Rohen H. Singh, Margarita Favorskaya
Edizione [1st ed. 2025.]
Pubbl/distr/stampa Cham : , : Springer Nature Switzerland : , : Imprint : Springer, , 2025
Descrizione fisica 1 online resource (XIV, 479 p. 223 illus., 187 illus. in color.)
Disciplina 006.3
Collana Learning and Analytics in Intelligent Systems
Soggetto topico Computational intelligence
Artificial intelligence
Automatic control
Robotics
Automation
Computational Intelligence
Artificial Intelligence
Control, Robotics, Automation
ISBN 3-031-82706-6
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto -- Evaluating the top Machine Learning Classifiers Used in Diabetes Prediction -- A Machine Learning-Based Approach to Enhance Fraud Detection Using Decision Tree -- Oropharyngeal Cancer Detection with Machine Learning for Precision Diagnosis -- A Deep Learning Framework for Crime Detection -- Deep Learning and Bio-Inspired Algorithm Based Chat Bot, etc.
Record Nr. UNINA-9910987782503321
Cham : , : Springer Nature Switzerland : , : Imprint : Springer, , 2025
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Biologically Inspired Techniques in Many-Criteria Decision Making : International Conference on Biologically Inspired Techniques in Many-Criteria Decision Making (BITMDM-2019) / / edited by Satchidananda Dehuri, Bhabani Shankar Prasad Mishra, Pradeep Kumar Mallick, Sung-Bae Cho, Margarita N. Favorskaya
Biologically Inspired Techniques in Many-Criteria Decision Making : International Conference on Biologically Inspired Techniques in Many-Criteria Decision Making (BITMDM-2019) / / edited by Satchidananda Dehuri, Bhabani Shankar Prasad Mishra, Pradeep Kumar Mallick, Sung-Bae Cho, Margarita N. Favorskaya
Edizione [1st ed. 2020.]
Pubbl/distr/stampa Cham : , : Springer International Publishing : , : Imprint : Springer, , 2020
Descrizione fisica 1 online resource (xv, 258 pages)
Disciplina 658.403
Collana Learning and Analytics in Intelligent Systems
Soggetto topico Computational intelligence
Engineering - Data processing
Artificial intelligence
Computational Intelligence
Data Engineering
Artificial Intelligence
ISBN 3-030-39033-0
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Chapter 1: Classification of Arrhythmia Using Artificial Neural Network with Grey Wolf Optimization -- Chapter 2: Multi-objective Biogeography-Based Optimization for Influence Maximization-Cost Minimization in Social Networks -- Chapter 3: Classification of Credit Dataset Using Improved Particle Swarm Optimization Tuned Radial Basis Function Neural Networks -- Chapter 4: Multi-verse Optimization of Multilayer Perceptrons (MV-MLPs) for Efficient Modeling and Forecasting of Crude Oil Prices Data -- Chapter 5: Application of machine learning to predict diseases based on symptoms in rural India -- Chapter 6: Classıfıcatıon of Real Tıme Noısy Fıngerprınt Images Usıng FLANN -- Chapter 7: Software Reliability Prediction with Ensemble Method and Virtual Data Point Incorporation -- Chapter 8: Hyperspectral Image Classification using Stochastic Gradient Descent based Support Vector Machine -- Chapter 9: A Survey on Ant Colony Optimization for Solving Some of the Selected NP-Hard Problem -- Chapter 10: Machine Learning Models for Stock Prediction using Real-Time Streaming Data -- Chapter 11: Epidemiology of Breast Cancer (BC) and its Early Identification via Evolving Machine Learning Classification Tools (MLCT)–A Study -- Chapter 12: Ensemble Classification Approach for Cancer Prognosis and Prediction -- Chapter 13: Extractive Odia Text Summarization System: An OCR based Approach -- Chapter 14: Predicting sensitivity of local news articles from Odia dailies -- Chapter 15: A systematic frame work using machine learning approaches in supply chain forecasting -- Chapter 16: An Intelligent system on computer-aided diagnosis for Parkinson’s disease with MRI using Machine Learning -- Chapter 17: Operations on Picture Fuzzy Numbers and their Application in Multi-Criteria Group Decision Making Problems -- Chapter 18: Some Generalized Results on Multi-Criteria Decision Making Model using Fuzzy TOPSIS Technique -- Chapter 19: A Survey on FP-Tree Based Incremental Frequent Pattern Mining -- Chapter 20: Improving Co-expressed Gene Pattern Finding Using Gene Ontology -- Chapter 21: Survey of Methods Used for Differential Expression Analysis on RNA Seq Data -- Chapter 22: Adaptive Antenna Tilt for Cellular Coverage Optimization in Suburban Scenario -- Chapter 23: A survey of the different itemset representation for candidate.
Record Nr. UNINA-9910484374803321
Cham : , : Springer International Publishing : , : Imprint : Springer, , 2020
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Boosting Software Development Using Machine Learning / / edited by Tirimula Rao Benala, Satchidananda Dehuri, Rajib Mall, Margarita N. Favorskaya
Boosting Software Development Using Machine Learning / / edited by Tirimula Rao Benala, Satchidananda Dehuri, Rajib Mall, Margarita N. Favorskaya
Edizione [1st ed. 2025.]
Pubbl/distr/stampa Cham : , : Springer Nature Switzerland : , : Imprint : Springer, , 2025
Descrizione fisica 1 online resource (XXII, 320 p. 66 illus., 41 illus. in color.)
Disciplina 006.3
Collana Artificial Intelligence-Enhanced Software and Systems Engineering
Soggetto topico Computational intelligence
Artificial intelligence
Machine learning
Computational Intelligence
Artificial Intelligence
Machine Learning
ISBN 3-031-88188-5
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto 1.Transforming Software Development: From Traditional Methods to Generative Artificial Intelligence -- 2.Case Study: Transforming Operational and Organizational Efficiency Using Artificial Intelligence and Machine Learning -- 3.Revolutionizing Software Development: The Transformative Influence of Machine Learning Integrated SDLC Model -- 4.Generative Coding: Unlocking Ontological AI -- 5.Case Studies: Machine Learning Approaches for Software Development Effort Estimation -- 6.Hybridizing Metaheuristics and Analogy-based Methods with Ensemble Learning for Improved Software Cost Estimation -- 7.A Review on Detection of Design Pattern in Source Code Using Machine Learning Techniques -- 8.Machine Learning Techniques for the Measurement of Software Attributes -- 9.An Effective Analysis of New Metaheuristic Algorithms and its Performance Comparison -- 10.Empowering Software Security: Leveraging Machine Learning for Anomaly Detection and Threat Prevention -- 11.Sentiment Analysis on Movie Reviews Using the Convolutional LSTM (Co-LSTM) Model -- 12.An Overview of AI Workload Optimization Techniques -- 13.Opportunity Discovery for Effective Innovation Using Artificial Intelligence -- 14.Applications of Machine Learning Algorithms in Open Innovation.
Record Nr. UNINA-9911007493203321
Cham : , : Springer Nature Switzerland : , : Imprint : Springer, , 2025
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Cloud Computing for Optimization: Foundations, Applications, and Challenges / / edited by Bhabani Shankar Prasad Mishra, Himansu Das, Satchidananda Dehuri, Alok Kumar Jagadev
Cloud Computing for Optimization: Foundations, Applications, and Challenges / / edited by Bhabani Shankar Prasad Mishra, Himansu Das, Satchidananda Dehuri, Alok Kumar Jagadev
Edizione [1st ed. 2018.]
Pubbl/distr/stampa Cham : , : Springer International Publishing : , : Imprint : Springer, , 2018
Descrizione fisica 1 online resource (467 pages)
Disciplina 004.6782
Collana Studies in Big Data
Soggetto topico Computational intelligence
Artificial intelligence
Big data
Computational Intelligence
Artificial Intelligence
Big Data
ISBN 3-319-73676-0
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Nature Inspired Optimizations in Cloud Computing: Applications and Challenges.- Resource Allocation in Cloud Computing Using OptimizationTechniques.- Energy Aware Resource Allocation Model for IaaS Optimization.- A Game Theoretic Model for Cloud Federation -- Resource Provisioning Strategy for Scientific Workflows in Cloud Computing Environment --   Consolidation in Cloud Environment Using Optimization Techniques.
Record Nr. UNINA-9910739444303321
Cham : , : Springer International Publishing : , : Imprint : Springer, , 2018
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Computational Intelligence for Big Data Analysis : Frontier Advances and Applications / / edited by D.P. Acharjya, Satchidananda Dehuri, Sugata Sanyal
Computational Intelligence for Big Data Analysis : Frontier Advances and Applications / / edited by D.P. Acharjya, Satchidananda Dehuri, Sugata Sanyal
Edizione [1st ed. 2015.]
Pubbl/distr/stampa Cham : , : Springer International Publishing : , : Imprint : Springer, , 2015
Descrizione fisica 1 online resource (276 p.)
Disciplina 620.00151
Collana Adaptation, Learning, and Optimization
Soggetto topico Computational intelligence
Data mining
Artificial intelligence
Computational Intelligence
Data Mining and Knowledge Discovery
Artificial Intelligence
ISBN 3-319-16598-4
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto “Atrain Distributed System” (ADS) : An Infinitely Scalable Architecture for Processing Big Data of any 4Vs -- “Atrain Distributed System” (ADS) : An Infinitely Scalable Architecture for Processing Big Data of any 4Vs -- Learning Using Hybrid Intelligence Techniques -- Neutrosophic Sets and its Applications to Decision Making -- An Efficient Grouping Genetic Algorithm for Data Clustering and Big Data Analysis -- Self Organizing Migrating Algorithm with Nelder Mead Crossover and Log-Logisti Mutation for Large Scale Optimization -- A Spectrum of Big Data Applications for Data Analytics -- Fundamentals of Brain Signals and its Medical Application Using Data Analysis Techniques -- BigData: Processing of Data Intensive Applications on Cloud -- Framework for Supporting Heterogenous Clouds using Model Driven Approach -- Cloud based Big Data Analytics:WAN Optimization Techniques and Solutions -- Cloud Based E-Governance Solution: A Case Study.
Record Nr. UNINA-9910299836203321
Cham : , : Springer International Publishing : , : Imprint : Springer, , 2015
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Integration of swarm intelligence and artificial neutral network [[electronic resource] /] / Satchidananda Dehuri, Susmita Ghosh, Sung-bae Cho, editors
Integration of swarm intelligence and artificial neutral network [[electronic resource] /] / Satchidananda Dehuri, Susmita Ghosh, Sung-bae Cho, editors
Pubbl/distr/stampa Hackensack, N.J. ; ; London, : World Scientific, 2011
Descrizione fisica 1 online resource (352 p.)
Disciplina 006.3
Altri autori (Persone) DehuriSatchidananda
GhoshSusmita
ChoSung-Bae
Collana Series in machine perception and artificial intelligence
Soggetto topico Swarm intelligence
Neural networks (Computer science)
Soggetto genere / forma Electronic books.
ISBN 1-283-43330-3
9786613433305
981-4280-15-1
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Contents; Preface; Chapter 1 Swarm Intelligence and Neural Networks; 1.1. Introduction; 1.2. Swarm Intelligence; 1.2.1. Particle Swarm Optimization; 1.2.2. Ant Colony Optimization; 1.2.3. Bee Colony Optimization; 1.3. Neural Networks; 1.3.1. Evolvable Neural Network; 1.3.2. Higher Order Neural Network; 1.3.3. Pi (Π)-Sigma (Σ) Neural Networks; 1.3.4. Functional Link Artificial Neural Network; 1.3.5. Ridge Polynomial Neural Networks (RPNNs); 1.4. Summary and Discussion; References; Chapter 2 Neural Network and Swarm Intelligence for Data Mining; 2.1. Introduction; 2.2. Testbeds for Data Mining
2.2.1. Fisher Iris Data2.2.2. Pima - Diabetes Data; 2.2.3. Shuttle Data; 2.2.4. Classification Efficiency; 2.3. Neural Network for Data Mining; 2.3.1. Multi-Layer Perceptron (MLP); 2.3.2. Radial Basis Function Network; 2.4. Swarm Intelligence for Data Mining; 2.4.1. Ant Miner; 2.4.2. Artificial Bee Colony; 2.4.3. Particle Swarm Optimization; 2.5. Comparative Study; 2.6. Conclusions and Outlook; Acknowledgments; References; Chapter 3 Multi-Objective Ant Colony Optimization: A Taxonomy and Review of Approaches; 3.1. Introduction; 3.2. Ant Colony Optimization
3.3. Basic Concepts of Multi-Objective Optimization3.4. The ACO Metaheuristic for MOOPs in the Literature; 3.5. ACO Variants for MOOP: A Refined Taxonomy; 3.6. Promising Research Areas; 3.7. Conclusions; Acknowledgments; References; Chapter 4 Recurrent Neural Networks with Discontinuous Activation Functions for Convex Optimization; 4.1. Introduction; 4.2. Related Definitions and Lemmas; 4.3. For Linear Programming; 4.3.1. Model Description and Convergence Results; 4.3.2. Simulation Results; 4.4. For Quadratic Programming; 4.4.1. Model Description; 4.4.2. Convergence Results
4.4.3. Simulation Results4.5. For Non-Smooth Convex Optimization Subject to Linear Equality Constraints; 4.5.1. Model Description and Convergence Results; 4.5.2. Constrained Least Absolute Deviation; 4.6. Application to k-Winners-Take-All; 4.6.1. LP-Based Model; 4.6.2. QP-Based Model; 4.6.3. Simulation Results; 4.7. Concluding Remarks; Acknowledgments; References; Chapter 5 Automated Power Quality Disturbance Classification Using Evolvable Neural Network; 5.1. Introduction; 5.2. Wavelet Transform (WT); 5.3. Brief Overview of Neural Network Classifiers
5.4. Overview of Particle Swarm Optimization5.5. Signal Generation, Feature Extraction and Classification; 5.6. Results and Discussion; 5.7. Conclusions; References; Chapter 6 Condition Monitoring and Fault Diagnosis Using Intelligent Techniques; 6.1. Introduction; 6.2. Methodology; 6.2.1. Hardware Specification, System Setup and Audio Data Generation; 6.2.2. Data Pre-Processing; 6.2.3. Data Classification Techniques; 6.2.4. Signal Segregation using Independent Component Analysis; 6.3. Experimental Details; 6.3.1. Pre-Processing
6.3.2. Method 1: Artificial Neural Network Setup for Engine Classification
Record Nr. UNINA-9910464493103321
Hackensack, N.J. ; ; London, : World Scientific, 2011
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Integration of swarm intelligence and artificial neutral network [[electronic resource] /] / Satchidananda Dehuri, Susmita Ghosh, Sung-bae Cho, editors
Integration of swarm intelligence and artificial neutral network [[electronic resource] /] / Satchidananda Dehuri, Susmita Ghosh, Sung-bae Cho, editors
Pubbl/distr/stampa Hackensack, N.J. ; ; London, : World Scientific, 2011
Descrizione fisica 1 online resource (352 p.)
Disciplina 006.3
Altri autori (Persone) DehuriSatchidananda
GhoshSusmita
ChoSung-Bae
Collana Series in machine perception and artificial intelligence
Soggetto topico Swarm intelligence
Neural networks (Computer science)
ISBN 1-283-43330-3
9786613433305
981-4280-15-1
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Contents; Preface; Chapter 1 Swarm Intelligence and Neural Networks; 1.1. Introduction; 1.2. Swarm Intelligence; 1.2.1. Particle Swarm Optimization; 1.2.2. Ant Colony Optimization; 1.2.3. Bee Colony Optimization; 1.3. Neural Networks; 1.3.1. Evolvable Neural Network; 1.3.2. Higher Order Neural Network; 1.3.3. Pi (Π)-Sigma (Σ) Neural Networks; 1.3.4. Functional Link Artificial Neural Network; 1.3.5. Ridge Polynomial Neural Networks (RPNNs); 1.4. Summary and Discussion; References; Chapter 2 Neural Network and Swarm Intelligence for Data Mining; 2.1. Introduction; 2.2. Testbeds for Data Mining
2.2.1. Fisher Iris Data2.2.2. Pima - Diabetes Data; 2.2.3. Shuttle Data; 2.2.4. Classification Efficiency; 2.3. Neural Network for Data Mining; 2.3.1. Multi-Layer Perceptron (MLP); 2.3.2. Radial Basis Function Network; 2.4. Swarm Intelligence for Data Mining; 2.4.1. Ant Miner; 2.4.2. Artificial Bee Colony; 2.4.3. Particle Swarm Optimization; 2.5. Comparative Study; 2.6. Conclusions and Outlook; Acknowledgments; References; Chapter 3 Multi-Objective Ant Colony Optimization: A Taxonomy and Review of Approaches; 3.1. Introduction; 3.2. Ant Colony Optimization
3.3. Basic Concepts of Multi-Objective Optimization3.4. The ACO Metaheuristic for MOOPs in the Literature; 3.5. ACO Variants for MOOP: A Refined Taxonomy; 3.6. Promising Research Areas; 3.7. Conclusions; Acknowledgments; References; Chapter 4 Recurrent Neural Networks with Discontinuous Activation Functions for Convex Optimization; 4.1. Introduction; 4.2. Related Definitions and Lemmas; 4.3. For Linear Programming; 4.3.1. Model Description and Convergence Results; 4.3.2. Simulation Results; 4.4. For Quadratic Programming; 4.4.1. Model Description; 4.4.2. Convergence Results
4.4.3. Simulation Results4.5. For Non-Smooth Convex Optimization Subject to Linear Equality Constraints; 4.5.1. Model Description and Convergence Results; 4.5.2. Constrained Least Absolute Deviation; 4.6. Application to k-Winners-Take-All; 4.6.1. LP-Based Model; 4.6.2. QP-Based Model; 4.6.3. Simulation Results; 4.7. Concluding Remarks; Acknowledgments; References; Chapter 5 Automated Power Quality Disturbance Classification Using Evolvable Neural Network; 5.1. Introduction; 5.2. Wavelet Transform (WT); 5.3. Brief Overview of Neural Network Classifiers
5.4. Overview of Particle Swarm Optimization5.5. Signal Generation, Feature Extraction and Classification; 5.6. Results and Discussion; 5.7. Conclusions; References; Chapter 6 Condition Monitoring and Fault Diagnosis Using Intelligent Techniques; 6.1. Introduction; 6.2. Methodology; 6.2.1. Hardware Specification, System Setup and Audio Data Generation; 6.2.2. Data Pre-Processing; 6.2.3. Data Classification Techniques; 6.2.4. Signal Segregation using Independent Component Analysis; 6.3. Experimental Details; 6.3.1. Pre-Processing
6.3.2. Method 1: Artificial Neural Network Setup for Engine Classification
Record Nr. UNINA-9910788961703321
Hackensack, N.J. ; ; London, : World Scientific, 2011
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
A Journey Towards Bio-inspired Techniques in Software Engineering / / edited by Jagannath Singh, Saurabh Bilgaiyan, Bhabani Shankar Prasad Mishra, Satchidananda Dehuri
A Journey Towards Bio-inspired Techniques in Software Engineering / / edited by Jagannath Singh, Saurabh Bilgaiyan, Bhabani Shankar Prasad Mishra, Satchidananda Dehuri
Edizione [1st ed. 2020.]
Pubbl/distr/stampa Cham : , : Springer International Publishing : , : Imprint : Springer, , 2020
Descrizione fisica 1 online resource (viii, 210 pages) : illustrations
Disciplina 660.6
Collana Intelligent Systems Reference Library
Soggetto topico Computational intelligence
Software engineering
Computational Intelligence
Software Engineering
ISBN 3-030-40928-7
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910483671703321
Cham : , : Springer International Publishing : , : Imprint : Springer, , 2020
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui