top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Canard Cycles : From Birth to Transition / Peter De Maesschalck, Freddy Dumortier, Robert Roussarie
Canard Cycles : From Birth to Transition / Peter De Maesschalck, Freddy Dumortier, Robert Roussarie
Autore De Maesschalck, Peter
Pubbl/distr/stampa Cham, : Springer, 2021
Descrizione fisica xxi, 408 p. : ill. ; 24 cm
Altri autori (Persone) Dumortier, Freddy
Roussarie, Robert H.
Soggetto topico 34E15 - Singular perturbations, general theory for ordinary differential equation [MSC 2020]
34C07 - Theory of limit cycles of polynomial and analytic vector fields (existence, uniqueness, bounds, Hilbert’s 16th problem and ramifications) for ordinary differential equations [MSC 2020]
34D15 - Singular perturbations of ordinary differential equation [MSC 2020]
34E17 - Canard solutions to ordinary differential equation [MSC 2020]
Soggetto non controllato Blow up method
Canard cycles
Finite cyclicity
Limit cycles
Ordinary differential equations
Relaxation oscillations
Singular pertubation theory
Slow-fast bifurcations
Slow-fast systems
Transition asymptotics
Vector fields
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNICAMPANIA-VAN0274618
De Maesschalck, Peter  
Cham, : Springer, 2021
Materiale a stampa
Lo trovi qui: Univ. Vanvitelli
Opac: Controlla la disponibilità qui
Canard Cycles : From Birth to Transition / Peter De Maesschalck, Freddy Dumortier, Robert Roussarie
Canard Cycles : From Birth to Transition / Peter De Maesschalck, Freddy Dumortier, Robert Roussarie
Autore De Maesschalck, Peter
Pubbl/distr/stampa Cham, : Springer, 2021
Descrizione fisica xxi, 408 p. : ill. ; 24 cm
Altri autori (Persone) Dumortier, Freddy
Roussarie, Robert H.
Soggetto topico 34C07 - Theory of limit cycles of polynomial and analytic vector fields (existence, uniqueness, bounds, Hilbert’s 16th problem and ramifications) for ordinary differential equations [MSC 2020]
34D15 - Singular perturbations of ordinary differential equation [MSC 2020]
34E15 - Singular perturbations, general theory for ordinary differential equation [MSC 2020]
34E17 - Canard solutions to ordinary differential equation [MSC 2020]
Soggetto non controllato Blow up method
Canard cycles
Finite cyclicity
Limit cycles
Ordinary differential equations
Relaxation oscillations
Singular pertubation theory
Slow-fast bifurcations
Slow-fast systems
Transition asymptotics
Vector fields
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNICAMPANIA-VAN00274618
De Maesschalck, Peter  
Cham, : Springer, 2021
Materiale a stampa
Lo trovi qui: Univ. Vanvitelli
Opac: Controlla la disponibilità qui