top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Biomedical optical sensors : differentiators for winning technologies / / Richard De La Rue, Hans Peter Herzig, Martina Gerken, editors
Biomedical optical sensors : differentiators for winning technologies / / Richard De La Rue, Hans Peter Herzig, Martina Gerken, editors
Edizione [1st ed. 2020.]
Pubbl/distr/stampa Cham, Switzerland : , : Springer, , [2020]
Descrizione fisica 1 online resource (XIV, 236 p. 137 illus., 121 illus. in color.)
Disciplina 610.28
Collana Biological and medical physics, biomedical engineering
Soggetto topico Biosensors
ISBN 3-030-48387-8
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Silicon Photonic-Wire Biochips -- Refractive Index Sensing Using Nanoscale Slot Waveguide Cavities -- Photonic Crystal Biomedical Sensors -- Sensors Based on Optical Fibre Microwires And Related Resonators -- Plasmonic Metamaterials for Sensing -- Long Range Plasmonic Waveguide Sensors -- Photonic Crystal Biosensor Chip for Label-Free Detection of Bacteria -- Planar Optofluidics in Biosensing Applications -- Optofluidic Biosensing -- Perspectives on the Use of Optical Forces for On-Chip Particle Delivery and Sensing.
Record Nr. UNINA-9910427666503321
Cham, Switzerland : , : Springer, , [2020]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Biomedical optical sensors : differentiators for winning technologies / / Richard De La Rue, Hans Peter Herzig, Martina Gerken, editors
Biomedical optical sensors : differentiators for winning technologies / / Richard De La Rue, Hans Peter Herzig, Martina Gerken, editors
Edizione [1st ed. 2020.]
Pubbl/distr/stampa Cham, Switzerland : , : Springer, , [2020]
Descrizione fisica 1 online resource (XIV, 236 p. 137 illus., 121 illus. in color.)
Disciplina 610.28
Collana Biological and medical physics, biomedical engineering
Soggetto topico Biosensors
ISBN 3-030-48387-8
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Silicon Photonic-Wire Biochips -- Refractive Index Sensing Using Nanoscale Slot Waveguide Cavities -- Photonic Crystal Biomedical Sensors -- Sensors Based on Optical Fibre Microwires And Related Resonators -- Plasmonic Metamaterials for Sensing -- Long Range Plasmonic Waveguide Sensors -- Photonic Crystal Biosensor Chip for Label-Free Detection of Bacteria -- Planar Optofluidics in Biosensing Applications -- Optofluidic Biosensing -- Perspectives on the Use of Optical Forces for On-Chip Particle Delivery and Sensing.
Record Nr. UNISA-996418449803316
Cham, Switzerland : , : Springer, , [2020]
Materiale a stampa
Lo trovi qui: Univ. di Salerno
Opac: Controlla la disponibilità qui
Compact semiconductor lasers / / edited by Richard M. De La Rue, Siyuan Yu, and Jean-Michel Lourtioz
Compact semiconductor lasers / / edited by Richard M. De La Rue, Siyuan Yu, and Jean-Michel Lourtioz
Pubbl/distr/stampa Weinheim an der Bergstrasse, Germany : , : Wiley-VCH, , 2014
Descrizione fisica 1 online resource (343 p.)
Disciplina 621.366
Soggetto topico Lasers - Industrial applications
Semiconductor lasers - Mathematical models
ISBN 3-527-65536-0
3-527-65534-4
3-527-65537-9
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Compact Semiconductor Lasers; Contents; Preface and Introduction; List of Contributors; Color Plates; Chapter 1 Nanoscale Metallo-Dielectric Coherent Light Sources; 1.1 Introduction; 1.2 Composite Metallo-Dielectric-Gain Resonators; 1.2.1 Composite Gain-Dielectric-Metal Waveguides; 1.2.2 Composite Gain-Dielectric-Metal 3D Resonators; 1.3 Experimental Validations of Subwavelength Metallo-Dielectric Lasers for Operation at Room-Temperature; 1.3.1 Fabrication Processes for Subwavelength Metallo-Dielectric Lasers; 1.3.2 Characterization and Testing of Subwavelength Metallo-Dielectric Lasers
1.4 Electrically Pumped Subwavelength Metallo-Dielectric Lasers1.4.1 Cavity Design and Modeling of Electrically Pumped Subwavelength Metallo-Dielectric Lasers; 1.4.2 Fabrication of Electrically Pumped Subwavelength Metallo-Dielectric Lasers; 1.4.3 Measurements and Discussion of Electrically Pumped Subwavelength Metallo-Dielectric Lasers; 1.5 Thresholdless Nanoscale Coaxial Lasers; 1.5.1 Design and Fabrication of Thresholdless Nanoscale Coaxial Lasers; 1.5.2 Characterization and Discussion of Thresholdless Nanoscale Coaxial Lasers; 1.6 Summary, Discussions, and Conclusions; Acknowledgments
ReferencesChapter 2 Optically Pumped Semiconductor Photonic Crystal Lasers; 2.1 Introduction; 2.2 Photonic Crystal Lasers: Design and Fabrication; 2.2.1 Micro/Nano Cavity Based PhC Lasers; 2.2.1.1 Lasers Based on 2D PhC Cavities; 2.2.1.2 Lasers Based on 3D PhC Cavities; 2.2.2 Slow-Light Based PhC Lasers: DFB-Like Lasers; 2.2.2.1 2D PhC DFB-Like Lasers for In-Plane Emission; 2.2.2.2 2D PhC DFB- Like Lasers for Surface Emission; 2.3 Photonic Crystal Laser Characteristics; 2.3.1 Rate Equation Model and PhC Laser Parameters; 2.3.1.1 Linear Rate Equation Model; 2.3.1.2 PhC Laser Parameters
2.3.2 The Stationary Regime in PhC Lasers2.3.3 Dynamics of PhC Lasers; 2.4 The Final Assault: Issues That Have Been Partially Solved and Others That Remain to Be Solved Before Photonic Crystal Lasers Become Ready for Application; 2.4.1 Room Temperature Continuous Wave Room Temperature Operation of Photonic Crystal Nano-Lasers; 2.4.1.1 CW Operation via Nonradiative Recombination Reduction; 2.4.1.1.1 CW Operation in Air Clad PhCs by a Smart Choice of Active Material; 2.4.1.1.2 RT CW Operation with QWs in an Air Cladding Membrane, via ``Fine Processing'' and Surface Passivation
2.4.1.2 CW Operation via Increased Heat Sinking2.4.1.2.1 A Comparison of Heat Sinking Between a Membrane and a Bonded PhC Laser; 2.4.1.2.2 CW Operation at RT Obtained by Heat Sinking through a Substrate; 2.4.1.2.3 CW Operation at RT Obtained through the Use of a PhC with Higher Thermal Conductivity; 2.4.2 Interfacing and Power Issues; 2.4.2.1 Interfacing an Isolated PhC Cavity-Based Device with the External World; 2.4.2.2 Interfacing Active-PhC Cavity-Based Devices within an Optical Circuit; 2.5 Conclusions; References
Chapter 3 Electrically Pumped Photonic Crystal Lasers: Laser Diodes and Quantum Cascade Lasers
Record Nr. UNINA-9910132213903321
Weinheim an der Bergstrasse, Germany : , : Wiley-VCH, , 2014
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Compact semiconductor lasers / / edited by Richard M. De La Rue, Siyuan Yu, and Jean-Michel Lourtioz
Compact semiconductor lasers / / edited by Richard M. De La Rue, Siyuan Yu, and Jean-Michel Lourtioz
Pubbl/distr/stampa Weinheim an der Bergstrasse, Germany : , : Wiley-VCH, , 2014
Descrizione fisica 1 online resource (343 p.)
Disciplina 621.366
Soggetto topico Lasers - Industrial applications
Semiconductor lasers - Mathematical models
ISBN 3-527-65536-0
3-527-65534-4
3-527-65537-9
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Compact Semiconductor Lasers; Contents; Preface and Introduction; List of Contributors; Color Plates; Chapter 1 Nanoscale Metallo-Dielectric Coherent Light Sources; 1.1 Introduction; 1.2 Composite Metallo-Dielectric-Gain Resonators; 1.2.1 Composite Gain-Dielectric-Metal Waveguides; 1.2.2 Composite Gain-Dielectric-Metal 3D Resonators; 1.3 Experimental Validations of Subwavelength Metallo-Dielectric Lasers for Operation at Room-Temperature; 1.3.1 Fabrication Processes for Subwavelength Metallo-Dielectric Lasers; 1.3.2 Characterization and Testing of Subwavelength Metallo-Dielectric Lasers
1.4 Electrically Pumped Subwavelength Metallo-Dielectric Lasers1.4.1 Cavity Design and Modeling of Electrically Pumped Subwavelength Metallo-Dielectric Lasers; 1.4.2 Fabrication of Electrically Pumped Subwavelength Metallo-Dielectric Lasers; 1.4.3 Measurements and Discussion of Electrically Pumped Subwavelength Metallo-Dielectric Lasers; 1.5 Thresholdless Nanoscale Coaxial Lasers; 1.5.1 Design and Fabrication of Thresholdless Nanoscale Coaxial Lasers; 1.5.2 Characterization and Discussion of Thresholdless Nanoscale Coaxial Lasers; 1.6 Summary, Discussions, and Conclusions; Acknowledgments
ReferencesChapter 2 Optically Pumped Semiconductor Photonic Crystal Lasers; 2.1 Introduction; 2.2 Photonic Crystal Lasers: Design and Fabrication; 2.2.1 Micro/Nano Cavity Based PhC Lasers; 2.2.1.1 Lasers Based on 2D PhC Cavities; 2.2.1.2 Lasers Based on 3D PhC Cavities; 2.2.2 Slow-Light Based PhC Lasers: DFB-Like Lasers; 2.2.2.1 2D PhC DFB-Like Lasers for In-Plane Emission; 2.2.2.2 2D PhC DFB- Like Lasers for Surface Emission; 2.3 Photonic Crystal Laser Characteristics; 2.3.1 Rate Equation Model and PhC Laser Parameters; 2.3.1.1 Linear Rate Equation Model; 2.3.1.2 PhC Laser Parameters
2.3.2 The Stationary Regime in PhC Lasers2.3.3 Dynamics of PhC Lasers; 2.4 The Final Assault: Issues That Have Been Partially Solved and Others That Remain to Be Solved Before Photonic Crystal Lasers Become Ready for Application; 2.4.1 Room Temperature Continuous Wave Room Temperature Operation of Photonic Crystal Nano-Lasers; 2.4.1.1 CW Operation via Nonradiative Recombination Reduction; 2.4.1.1.1 CW Operation in Air Clad PhCs by a Smart Choice of Active Material; 2.4.1.1.2 RT CW Operation with QWs in an Air Cladding Membrane, via ``Fine Processing'' and Surface Passivation
2.4.1.2 CW Operation via Increased Heat Sinking2.4.1.2.1 A Comparison of Heat Sinking Between a Membrane and a Bonded PhC Laser; 2.4.1.2.2 CW Operation at RT Obtained by Heat Sinking through a Substrate; 2.4.1.2.3 CW Operation at RT Obtained through the Use of a PhC with Higher Thermal Conductivity; 2.4.2 Interfacing and Power Issues; 2.4.2.1 Interfacing an Isolated PhC Cavity-Based Device with the External World; 2.4.2.2 Interfacing Active-PhC Cavity-Based Devices within an Optical Circuit; 2.5 Conclusions; References
Chapter 3 Electrically Pumped Photonic Crystal Lasers: Laser Diodes and Quantum Cascade Lasers
Record Nr. UNINA-9910818489903321
Weinheim an der Bergstrasse, Germany : , : Wiley-VCH, , 2014
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui