A Practical Introduction to Computer Vision with OpenCV [[electronic resource]] |
Autore | Dawson-Howe Kenneth |
Edizione | [1st edition] |
Pubbl/distr/stampa | Hoboken, : Wiley, 2014 |
Descrizione fisica | 1 online resource (235 p.) |
Disciplina |
006.3/7
006.37 |
Soggetto topico |
Computer vision -- Computer programs
Computer vision Computer vision - Computer programs Engineering & Applied Sciences Applied Physics |
Soggetto genere / forma | Electronic books. |
ISBN | 1-118-84873-X |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
A Practical Introduction to Computer Vision with OpenCV; Contents; Preface; 1 Introduction; 1.1 A Difficult Problem; 1.2 The Human Vision System; 1.3 Practical Applications of Computer Vision; 1.4 The Future of Computer Vision; 1.5 Material in This Textbook; 1.6 Going Further with Computer Vision; 2 Images; 2.1 Cameras; 2.1.1 The Simple Pinhole Camera Model; 2.2 Images; 2.2.1 Sampling; 2.2.2 Quantisation; 2.3 Colour Images; 2.3.1 Red-Green-Blue (RGB) Images; 2.3.2 Cyan-Magenta-Yellow (CMY) Images; 2.3.3 YUV Images; 2.3.4 Hue Luminance Saturation (HLS) Images; 2.3.5 Other Colour Spaces
2.3.6 Some Colour Applications2.4 Noise; 2.4.1 Types of Noise; 2.4.2 Noise Models; 2.4.3 Noise Generation; 2.4.4 Noise Evaluation; 2.5 Smoothing; 2.5.1 Image Averaging; 2.5.2 Local Averaging and Gaussian Smoothing; 2.5.3 Rotating Mask; 2.5.4 Median Filter; 3 Histograms; 3.1 1D Histograms; 3.1.1 Histogram Smoothing; 3.1.2 Colour Histograms; 3.2 3D Histograms; 3.3 Histogram/Image Equalisation; 3.4 Histogram Comparison; 3.5 Back-projection; 3.6 k-means Clustering; 4 Binary Vision; 4.1 Thresholding; 4.1.1 Thresholding Problems; 4.2 Threshold Detection Methods; 4.2.1 Bimodal Histogram Analysis 4.2.2 Optimal Thresholding4.2.3 Otsu Thresholding; 4.3 Variations on Thresholding; 4.3.1 Adaptive Thresholding; 4.3.2 Band Thresholding; 4.3.3 Semi-thresholding; 4.3.4 Multispectral Thresholding; 4.4 Mathematical Morphology; 4.4.1 Dilation; 4.4.2 Erosion; 4.4.3 Opening and Closing; 4.4.4 Grey-scale and Colour Morphology; 4.5 Connectivity; 4.5.1 Connectedness: Paradoxes and Solutions; 4.5.2 Connected Components Analysis; 5 Geometric Transformations; 5.1 Problem Specification and Algorithm; 5.2 Affine Transformations; 5.2.1 Known Affine Transformations; 5.2.2 Unknown Affine Transformations 5.3 Perspective Transformations5.4 Specification of More Complex Transformations; 5.5 Interpolation; 5.5.1 Nearest Neighbour Interpolation; 5.5.2 Bilinear Interpolation; 5.5.3 Bi-Cubic Interpolation; 5.6 Modelling and Removing Distortion from Cameras; 5.6.1 Camera Distortions; 5.6.2 Camera Calibration and Removing Distortion; 6 Edges; 6.1 Edge Detection; 6.1.1 First Derivative Edge Detectors; 6.1.2 Second Derivative Edge Detectors; 6.1.3 Multispectral Edge Detection; 6.1.4 Image Sharpening; 6.2 Contour Segmentation; 6.2.1 Basic Representations of Edge Data; 6.2.2 Border Detection 6.2.3 Extracting Line Segment Representations of Edge Contours6.3 Hough Transform; 6.3.1 Hough for Lines; 6.3.2 Hough for Circles; 6.3.3 Generalised Hough; 7 Features; 7.1 Moravec Corner Detection; 7.2 Harris Corner Detection; 7.3 FAST Corner Detection; 7.4 SIFT; 7.4.1 Scale Space Extrema Detection; 7.4.2 Accurate Keypoint Location; 7.4.3 Keypoint Orientation Assignment; 7.4.4 Keypoint Descriptor; 7.4.5 Matching Keypoints; 7.4.6 Recognition; 7.5 Other Detectors; 7.5.1 Minimum Eigenvalues; 7.5.2 SURF; 8 Recognition; 8.1 Template Matching; 8.1.1 Applications; 8.1.2 Template Matching Algorithm 8.1.3 Matching Metrics |
Record Nr. | UNINA-9910465307503321 |
Dawson-Howe Kenneth | ||
Hoboken, : Wiley, 2014 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
A Practical Introduction to Computer Vision with OpenCV |
Autore | Dawson-Howe Kenneth |
Edizione | [1st edition] |
Pubbl/distr/stampa | Hoboken, : Wiley, 2014 |
Descrizione fisica | 1 online resource (235 p.) |
Disciplina |
006.3/7
006.37 |
Collana | New York Academy of Sciences |
Soggetto topico |
Computer vision - Computer programs
Computer vision Engineering & Applied Sciences Applied Physics |
ISBN | 1-118-84873-X |
Classificazione | COM016000 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
A Practical Introduction to Computer Vision with OpenCV; Contents; Preface; 1 Introduction; 1.1 A Difficult Problem; 1.2 The Human Vision System; 1.3 Practical Applications of Computer Vision; 1.4 The Future of Computer Vision; 1.5 Material in This Textbook; 1.6 Going Further with Computer Vision; 2 Images; 2.1 Cameras; 2.1.1 The Simple Pinhole Camera Model; 2.2 Images; 2.2.1 Sampling; 2.2.2 Quantisation; 2.3 Colour Images; 2.3.1 Red-Green-Blue (RGB) Images; 2.3.2 Cyan-Magenta-Yellow (CMY) Images; 2.3.3 YUV Images; 2.3.4 Hue Luminance Saturation (HLS) Images; 2.3.5 Other Colour Spaces
2.3.6 Some Colour Applications2.4 Noise; 2.4.1 Types of Noise; 2.4.2 Noise Models; 2.4.3 Noise Generation; 2.4.4 Noise Evaluation; 2.5 Smoothing; 2.5.1 Image Averaging; 2.5.2 Local Averaging and Gaussian Smoothing; 2.5.3 Rotating Mask; 2.5.4 Median Filter; 3 Histograms; 3.1 1D Histograms; 3.1.1 Histogram Smoothing; 3.1.2 Colour Histograms; 3.2 3D Histograms; 3.3 Histogram/Image Equalisation; 3.4 Histogram Comparison; 3.5 Back-projection; 3.6 k-means Clustering; 4 Binary Vision; 4.1 Thresholding; 4.1.1 Thresholding Problems; 4.2 Threshold Detection Methods; 4.2.1 Bimodal Histogram Analysis 4.2.2 Optimal Thresholding4.2.3 Otsu Thresholding; 4.3 Variations on Thresholding; 4.3.1 Adaptive Thresholding; 4.3.2 Band Thresholding; 4.3.3 Semi-thresholding; 4.3.4 Multispectral Thresholding; 4.4 Mathematical Morphology; 4.4.1 Dilation; 4.4.2 Erosion; 4.4.3 Opening and Closing; 4.4.4 Grey-scale and Colour Morphology; 4.5 Connectivity; 4.5.1 Connectedness: Paradoxes and Solutions; 4.5.2 Connected Components Analysis; 5 Geometric Transformations; 5.1 Problem Specification and Algorithm; 5.2 Affine Transformations; 5.2.1 Known Affine Transformations; 5.2.2 Unknown Affine Transformations 5.3 Perspective Transformations5.4 Specification of More Complex Transformations; 5.5 Interpolation; 5.5.1 Nearest Neighbour Interpolation; 5.5.2 Bilinear Interpolation; 5.5.3 Bi-Cubic Interpolation; 5.6 Modelling and Removing Distortion from Cameras; 5.6.1 Camera Distortions; 5.6.2 Camera Calibration and Removing Distortion; 6 Edges; 6.1 Edge Detection; 6.1.1 First Derivative Edge Detectors; 6.1.2 Second Derivative Edge Detectors; 6.1.3 Multispectral Edge Detection; 6.1.4 Image Sharpening; 6.2 Contour Segmentation; 6.2.1 Basic Representations of Edge Data; 6.2.2 Border Detection 6.2.3 Extracting Line Segment Representations of Edge Contours6.3 Hough Transform; 6.3.1 Hough for Lines; 6.3.2 Hough for Circles; 6.3.3 Generalised Hough; 7 Features; 7.1 Moravec Corner Detection; 7.2 Harris Corner Detection; 7.3 FAST Corner Detection; 7.4 SIFT; 7.4.1 Scale Space Extrema Detection; 7.4.2 Accurate Keypoint Location; 7.4.3 Keypoint Orientation Assignment; 7.4.4 Keypoint Descriptor; 7.4.5 Matching Keypoints; 7.4.6 Recognition; 7.5 Other Detectors; 7.5.1 Minimum Eigenvalues; 7.5.2 SURF; 8 Recognition; 8.1 Template Matching; 8.1.1 Applications; 8.1.2 Template Matching Algorithm 8.1.3 Matching Metrics |
Record Nr. | UNINA-9910792280303321 |
Dawson-Howe Kenneth | ||
Hoboken, : Wiley, 2014 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
A Practical Introduction to Computer Vision with OpenCV |
Autore | Dawson-Howe Kenneth |
Edizione | [1st edition] |
Pubbl/distr/stampa | Hoboken, : Wiley, 2014 |
Descrizione fisica | 1 online resource (235 p.) |
Disciplina |
006.3/7
006.37 |
Collana | New York Academy of Sciences |
Soggetto topico |
Computer vision - Computer programs
Computer vision Engineering & Applied Sciences Applied Physics |
ISBN | 1-118-84873-X |
Classificazione | COM016000 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
A Practical Introduction to Computer Vision with OpenCV; Contents; Preface; 1 Introduction; 1.1 A Difficult Problem; 1.2 The Human Vision System; 1.3 Practical Applications of Computer Vision; 1.4 The Future of Computer Vision; 1.5 Material in This Textbook; 1.6 Going Further with Computer Vision; 2 Images; 2.1 Cameras; 2.1.1 The Simple Pinhole Camera Model; 2.2 Images; 2.2.1 Sampling; 2.2.2 Quantisation; 2.3 Colour Images; 2.3.1 Red-Green-Blue (RGB) Images; 2.3.2 Cyan-Magenta-Yellow (CMY) Images; 2.3.3 YUV Images; 2.3.4 Hue Luminance Saturation (HLS) Images; 2.3.5 Other Colour Spaces
2.3.6 Some Colour Applications2.4 Noise; 2.4.1 Types of Noise; 2.4.2 Noise Models; 2.4.3 Noise Generation; 2.4.4 Noise Evaluation; 2.5 Smoothing; 2.5.1 Image Averaging; 2.5.2 Local Averaging and Gaussian Smoothing; 2.5.3 Rotating Mask; 2.5.4 Median Filter; 3 Histograms; 3.1 1D Histograms; 3.1.1 Histogram Smoothing; 3.1.2 Colour Histograms; 3.2 3D Histograms; 3.3 Histogram/Image Equalisation; 3.4 Histogram Comparison; 3.5 Back-projection; 3.6 k-means Clustering; 4 Binary Vision; 4.1 Thresholding; 4.1.1 Thresholding Problems; 4.2 Threshold Detection Methods; 4.2.1 Bimodal Histogram Analysis 4.2.2 Optimal Thresholding4.2.3 Otsu Thresholding; 4.3 Variations on Thresholding; 4.3.1 Adaptive Thresholding; 4.3.2 Band Thresholding; 4.3.3 Semi-thresholding; 4.3.4 Multispectral Thresholding; 4.4 Mathematical Morphology; 4.4.1 Dilation; 4.4.2 Erosion; 4.4.3 Opening and Closing; 4.4.4 Grey-scale and Colour Morphology; 4.5 Connectivity; 4.5.1 Connectedness: Paradoxes and Solutions; 4.5.2 Connected Components Analysis; 5 Geometric Transformations; 5.1 Problem Specification and Algorithm; 5.2 Affine Transformations; 5.2.1 Known Affine Transformations; 5.2.2 Unknown Affine Transformations 5.3 Perspective Transformations5.4 Specification of More Complex Transformations; 5.5 Interpolation; 5.5.1 Nearest Neighbour Interpolation; 5.5.2 Bilinear Interpolation; 5.5.3 Bi-Cubic Interpolation; 5.6 Modelling and Removing Distortion from Cameras; 5.6.1 Camera Distortions; 5.6.2 Camera Calibration and Removing Distortion; 6 Edges; 6.1 Edge Detection; 6.1.1 First Derivative Edge Detectors; 6.1.2 Second Derivative Edge Detectors; 6.1.3 Multispectral Edge Detection; 6.1.4 Image Sharpening; 6.2 Contour Segmentation; 6.2.1 Basic Representations of Edge Data; 6.2.2 Border Detection 6.2.3 Extracting Line Segment Representations of Edge Contours6.3 Hough Transform; 6.3.1 Hough for Lines; 6.3.2 Hough for Circles; 6.3.3 Generalised Hough; 7 Features; 7.1 Moravec Corner Detection; 7.2 Harris Corner Detection; 7.3 FAST Corner Detection; 7.4 SIFT; 7.4.1 Scale Space Extrema Detection; 7.4.2 Accurate Keypoint Location; 7.4.3 Keypoint Orientation Assignment; 7.4.4 Keypoint Descriptor; 7.4.5 Matching Keypoints; 7.4.6 Recognition; 7.5 Other Detectors; 7.5.1 Minimum Eigenvalues; 7.5.2 SURF; 8 Recognition; 8.1 Template Matching; 8.1.1 Applications; 8.1.2 Template Matching Algorithm 8.1.3 Matching Metrics |
Record Nr. | UNINA-9910821121003321 |
Dawson-Howe Kenneth | ||
Hoboken, : Wiley, 2014 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|