top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Quantile regression : theory and applications / / Cristina Davino, Marilena Furno, Domenico Vistocco
Quantile regression : theory and applications / / Cristina Davino, Marilena Furno, Domenico Vistocco
Autore Davino Cristina
Pubbl/distr/stampa Chichester, England : , : Wiley, , 2014
Descrizione fisica 1 online resource (290 p.)
Disciplina 519.5/36
Altri autori (Persone) FurnoMarilena <1957->
VistoccoDomenico
Collana Wiley series in probability and statistics
Soggetto topico Quantile regression
Regression analysis
ISBN 1-118-75271-6
1-118-75268-6
1-118-75319-4
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Quantile Regression: Theory and Applications; Copyright; Contents; A.2.2 Summary statistics; Preface; Acknowledgments; Introduction; Nomenclature; 1 A visual introduction to quantile regression; Introduction; 1.1 The essential toolkit; 1.1.1 Unconditional mean, unconditional quantiles and surroundings; 1.1.2 Technical insight: Quantiles as solutions of a minimizationproblem; 1.1.3 Conditional mean, conditional quantiles and surroundings; 1.2 The simplest QR model: The case of the dummy regressor; 1.3 A slightly more complex QR model: The case of a nominal regressor
1.4 A typical QR model: The case of a quantitative regressor1.5 Summary of key points; References; 2 Quantile regression: Understanding how and why; Introduction; 2.1 How and why quantile regression works; 2.1.1 The general linear programming problem; 2.1.2 The linear programming formulation for the QR problem; 2.1.3 Methods for solving the linear programming problem; 2.2 A set of illustrative artificial data; 2.2.1 Homogeneous error models; 2.2.2 Heterogeneous error models; 2.2.3 Dependent data error models; 2.3 How and why to work with QR; 2.3.1 QR for homogeneous and heterogeneous models
2.3.2 QR prediction intervals2.3.3 A note on the quantile process; 2.4 Summary of key points; References; 3 Estimated coefficients and inference; Introduction; 3.1 Empirical distribution of the quantile regression estimator; 3.1.1 The case of i.i.d. errors; 3.1.2 The case of i.ni.d. errors; 3.1.3 The case of dependent errors; 3.2 Inference in QR, the i.i.d. case; 3.3 Wald, Lagrange multiplier, and likelihood ratio tests; 3.4 Summary of key points; References; 4 Additional tools for the interpretation and evaluation of thequantile regression model; Introduction; 4.1 Data pre-processing
4.1.1 Explanatory variable transformations4.1.2 Dependent variable transformations; 4.2 Response conditional density estimations; 4.2.1 The case of different scenario simulations; 4.2.2 The case of the response variable reconstruction; 4.3 Validation of the model; 4.3.1 Goodness of fit; 4.3.2 Resampling methods; 4.4 Summary of key points; References; 5 Models with dependent and with non-identically distributed data; Introduction; 5.1 A closer look at the scale parameter, the independent andidentically distributed case; 5.1.1 Estimating the variance of quantile regressions
5.1.2 Confidence intervals and hypothesis testing on theestimated coefficients5.1.3 Example for the i.i.d. case; 5.2 The non-identically distributed case; 5.2.1 Example for the non-identically distributed case; 5.2.2 Quick ways to test equality of coefficients across quantilesin Stata; 5.2.3 The wage equation revisited; 5.3 The dependent data model; 5.3.1 Example with dependent data; 5.4 Summary of key points; References; Appendix 5.A Heteroskedasticity tests and weighted quantileregression, Stata and R codes
5.A.1 Koenker and Basset test for heteroskedasticity comparingtwo quantile regressions
Record Nr. UNINA-9910138993403321
Davino Cristina  
Chichester, England : , : Wiley, , 2014
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Quantile regression : theory and applications / / Cristina Davino, Marilena Furno, Domenico Vistocco
Quantile regression : theory and applications / / Cristina Davino, Marilena Furno, Domenico Vistocco
Autore Davino Cristina
Pubbl/distr/stampa Chichester, England : , : Wiley, , 2014
Descrizione fisica 1 online resource (290 p.)
Disciplina 519.5/36
Altri autori (Persone) FurnoMarilena <1957->
VistoccoDomenico
Collana Wiley series in probability and statistics
Soggetto topico Quantile regression
Regression analysis
ISBN 1-118-75271-6
1-118-75268-6
1-118-75319-4
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Quantile Regression: Theory and Applications; Copyright; Contents; A.2.2 Summary statistics; Preface; Acknowledgments; Introduction; Nomenclature; 1 A visual introduction to quantile regression; Introduction; 1.1 The essential toolkit; 1.1.1 Unconditional mean, unconditional quantiles and surroundings; 1.1.2 Technical insight: Quantiles as solutions of a minimizationproblem; 1.1.3 Conditional mean, conditional quantiles and surroundings; 1.2 The simplest QR model: The case of the dummy regressor; 1.3 A slightly more complex QR model: The case of a nominal regressor
1.4 A typical QR model: The case of a quantitative regressor1.5 Summary of key points; References; 2 Quantile regression: Understanding how and why; Introduction; 2.1 How and why quantile regression works; 2.1.1 The general linear programming problem; 2.1.2 The linear programming formulation for the QR problem; 2.1.3 Methods for solving the linear programming problem; 2.2 A set of illustrative artificial data; 2.2.1 Homogeneous error models; 2.2.2 Heterogeneous error models; 2.2.3 Dependent data error models; 2.3 How and why to work with QR; 2.3.1 QR for homogeneous and heterogeneous models
2.3.2 QR prediction intervals2.3.3 A note on the quantile process; 2.4 Summary of key points; References; 3 Estimated coefficients and inference; Introduction; 3.1 Empirical distribution of the quantile regression estimator; 3.1.1 The case of i.i.d. errors; 3.1.2 The case of i.ni.d. errors; 3.1.3 The case of dependent errors; 3.2 Inference in QR, the i.i.d. case; 3.3 Wald, Lagrange multiplier, and likelihood ratio tests; 3.4 Summary of key points; References; 4 Additional tools for the interpretation and evaluation of thequantile regression model; Introduction; 4.1 Data pre-processing
4.1.1 Explanatory variable transformations4.1.2 Dependent variable transformations; 4.2 Response conditional density estimations; 4.2.1 The case of different scenario simulations; 4.2.2 The case of the response variable reconstruction; 4.3 Validation of the model; 4.3.1 Goodness of fit; 4.3.2 Resampling methods; 4.4 Summary of key points; References; 5 Models with dependent and with non-identically distributed data; Introduction; 5.1 A closer look at the scale parameter, the independent andidentically distributed case; 5.1.1 Estimating the variance of quantile regressions
5.1.2 Confidence intervals and hypothesis testing on theestimated coefficients5.1.3 Example for the i.i.d. case; 5.2 The non-identically distributed case; 5.2.1 Example for the non-identically distributed case; 5.2.2 Quick ways to test equality of coefficients across quantilesin Stata; 5.2.3 The wage equation revisited; 5.3 The dependent data model; 5.3.1 Example with dependent data; 5.4 Summary of key points; References; Appendix 5.A Heteroskedasticity tests and weighted quantileregression, Stata and R codes
5.A.1 Koenker and Basset test for heteroskedasticity comparingtwo quantile regressions
Record Nr. UNINA-9910807951903321
Davino Cristina  
Chichester, England : , : Wiley, , 2014
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Stat.Edu’21 - New Perspectives in Statistics Education. Proceedings of the International Conference Stat.Edu’21
Stat.Edu’21 - New Perspectives in Statistics Education. Proceedings of the International Conference Stat.Edu’21
Autore Davino Cristina
Pubbl/distr/stampa Napoli, : FedOA - Federico II University Press, 2022
Descrizione fisica 1 electronic resource (84 p.)
Collana Fuori collana
Soggetto topico Society & social sciences
Soggetto non controllato technology-based platforms, adaptive learning systems, statistical methods, statistics anxiety, higher education
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910557533103321
Davino Cristina  
Napoli, : FedOA - Federico II University Press, 2022
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui