top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Materials for automobile bodies [[electronic resource] /] / Geoff Davies
Materials for automobile bodies [[electronic resource] /] / Geoff Davies
Autore Davies Geoff
Pubbl/distr/stampa Amsterdam ; ; Oxford, : Butterworth-Heinemann, 2003
Descrizione fisica 1 online resource (290 p.)
Disciplina 629.232
Soggetto topico Automobiles - Bodies
Automobiles - Materials
Soggetto genere / forma Electronic books.
ISBN 1-280-96645-9
9786610966455
0-08-047339-3
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto front cover; copyright; table of contents; front matter; Preface; Acknowledgements; About the author; Disclaimer; body; 1. Introduction; 1.1 Overview of content; 1.2 Materials overview; 1.3 General format of presentation; 1.4 Introduction to body architecture and terminology; 2. Design and material utilization; 2.1 Introduction; 2.2 Historical perspective and evolving materials technology; 2.3 Finite element analysis; 2.4 One manufacturer's approach to current design; 2.5 Panel dent resistance and stiffness testing; 2.6 Fatigue; 2.7 Alternative body architecture
2.8 Integration of materials into designs2.9 Engineering requirements for plastic and composite components; 2.10 Cost analysis; 2.11 Learning points from Chapter 2; 3. Materials for consideration and use in automotive body structures; 3.1 Introduction; 3.2 Material candidates and selection criteria; 3.4 Aluminium; 3.5 Magnesium; 3.6 Polymers and composites; 3.7 Learning points from Chapter 3; 4. The role of demonstrationI concept and competition cars; 4.1 Introduction; 4.2 The BL Energy Conservation Vehicle F ECV 8M and aluminium structured vehicle technology F ASVTM; 4.3 ULSAB and ULSAB 40
4.4 Concept cars4.5 Competition cars; 4.6 Key learning points from Chapter 9; 5. Homponent manufacture; 5.1 Steel formability; 5.2 Aluminium formability; 5.3 Manufacture of components in magnesium; 5.4 Production of polymer parts; 5.5 Learning points from Chapter 5; 6. Component assembly materials joining technology; 6.1 Introduction; 6.2 Welding; 6.3 Adhesive bonding; 6.4 Mechanical fastening; 6.5 Learning points from Chapter 6; 7. Corrosion and protection of the automotive structure; 7.1 Introduction; 7.2 Relevant corrosion processes; 7.3 Effective design principles
7.4 Materials used for protection of the body structure7.5 Empirical vehicle and laboratory comparisons; 7.6 An introduction to electrochemical methods; 7.7 Learning points from Chapter N; 8. Environmental considerations; 8.1 Introduction; 8.2 Effect of body mass and emissions control; 8.3 Life cycle analysis (LCA); 8.4 Recycling and ELV considerations; 8.5 Hygiene; 8.6 BIW design for safety; 8.7 Learning points from Chapter 8; 9. Future trends in automotive body materials; 9.1 Introduction; 9.2 Factors influencing material change in the future - trends and requirements
9.3 Combined effect of above factors on materials utilization within 'expected' and 'accelerated' timescales9.4 Learning points from Chapter 9; index
Record Nr. UNINA-9910457325203321
Davies Geoff  
Amsterdam ; ; Oxford, : Butterworth-Heinemann, 2003
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Materials for automobile bodies [[electronic resource] /] / Geoff Davies
Materials for automobile bodies [[electronic resource] /] / Geoff Davies
Autore Davies Geoff
Pubbl/distr/stampa Amsterdam ; ; Oxford, : Butterworth-Heinemann, 2003
Descrizione fisica 1 online resource (290 p.)
Disciplina 629.232
Soggetto topico Automobiles - Bodies
Automobiles - Materials
ISBN 1-280-96645-9
9786610966455
0-08-047339-3
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto front cover; copyright; table of contents; front matter; Preface; Acknowledgements; About the author; Disclaimer; body; 1. Introduction; 1.1 Overview of content; 1.2 Materials overview; 1.3 General format of presentation; 1.4 Introduction to body architecture and terminology; 2. Design and material utilization; 2.1 Introduction; 2.2 Historical perspective and evolving materials technology; 2.3 Finite element analysis; 2.4 One manufacturer's approach to current design; 2.5 Panel dent resistance and stiffness testing; 2.6 Fatigue; 2.7 Alternative body architecture
2.8 Integration of materials into designs2.9 Engineering requirements for plastic and composite components; 2.10 Cost analysis; 2.11 Learning points from Chapter 2; 3. Materials for consideration and use in automotive body structures; 3.1 Introduction; 3.2 Material candidates and selection criteria; 3.4 Aluminium; 3.5 Magnesium; 3.6 Polymers and composites; 3.7 Learning points from Chapter 3; 4. The role of demonstrationI concept and competition cars; 4.1 Introduction; 4.2 The BL Energy Conservation Vehicle F ECV 8M and aluminium structured vehicle technology F ASVTM; 4.3 ULSAB and ULSAB 40
4.4 Concept cars4.5 Competition cars; 4.6 Key learning points from Chapter 9; 5. Homponent manufacture; 5.1 Steel formability; 5.2 Aluminium formability; 5.3 Manufacture of components in magnesium; 5.4 Production of polymer parts; 5.5 Learning points from Chapter 5; 6. Component assembly materials joining technology; 6.1 Introduction; 6.2 Welding; 6.3 Adhesive bonding; 6.4 Mechanical fastening; 6.5 Learning points from Chapter 6; 7. Corrosion and protection of the automotive structure; 7.1 Introduction; 7.2 Relevant corrosion processes; 7.3 Effective design principles
7.4 Materials used for protection of the body structure7.5 Empirical vehicle and laboratory comparisons; 7.6 An introduction to electrochemical methods; 7.7 Learning points from Chapter N; 8. Environmental considerations; 8.1 Introduction; 8.2 Effect of body mass and emissions control; 8.3 Life cycle analysis (LCA); 8.4 Recycling and ELV considerations; 8.5 Hygiene; 8.6 BIW design for safety; 8.7 Learning points from Chapter 8; 9. Future trends in automotive body materials; 9.1 Introduction; 9.2 Factors influencing material change in the future - trends and requirements
9.3 Combined effect of above factors on materials utilization within 'expected' and 'accelerated' timescales9.4 Learning points from Chapter 9; index
Record Nr. UNINA-9910784327803321
Davies Geoff  
Amsterdam ; ; Oxford, : Butterworth-Heinemann, 2003
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Materials for automobile bodies [[electronic resource] /] / Geoff Davies
Materials for automobile bodies [[electronic resource] /] / Geoff Davies
Autore Davies Geoff
Pubbl/distr/stampa Amsterdam ; ; Oxford, : Butterworth-Heinemann, 2003
Descrizione fisica 1 online resource (290 p.)
Disciplina 629.232
Soggetto topico Automobiles - Bodies
Automobiles - Materials
ISBN 1-280-96645-9
9786610966455
0-08-047339-3
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto front cover; copyright; table of contents; front matter; Preface; Acknowledgements; About the author; Disclaimer; body; 1. Introduction; 1.1 Overview of content; 1.2 Materials overview; 1.3 General format of presentation; 1.4 Introduction to body architecture and terminology; 2. Design and material utilization; 2.1 Introduction; 2.2 Historical perspective and evolving materials technology; 2.3 Finite element analysis; 2.4 One manufacturer's approach to current design; 2.5 Panel dent resistance and stiffness testing; 2.6 Fatigue; 2.7 Alternative body architecture
2.8 Integration of materials into designs2.9 Engineering requirements for plastic and composite components; 2.10 Cost analysis; 2.11 Learning points from Chapter 2; 3. Materials for consideration and use in automotive body structures; 3.1 Introduction; 3.2 Material candidates and selection criteria; 3.4 Aluminium; 3.5 Magnesium; 3.6 Polymers and composites; 3.7 Learning points from Chapter 3; 4. The role of demonstrationI concept and competition cars; 4.1 Introduction; 4.2 The BL Energy Conservation Vehicle F ECV 8M and aluminium structured vehicle technology F ASVTM; 4.3 ULSAB and ULSAB 40
4.4 Concept cars4.5 Competition cars; 4.6 Key learning points from Chapter 9; 5. Homponent manufacture; 5.1 Steel formability; 5.2 Aluminium formability; 5.3 Manufacture of components in magnesium; 5.4 Production of polymer parts; 5.5 Learning points from Chapter 5; 6. Component assembly materials joining technology; 6.1 Introduction; 6.2 Welding; 6.3 Adhesive bonding; 6.4 Mechanical fastening; 6.5 Learning points from Chapter 6; 7. Corrosion and protection of the automotive structure; 7.1 Introduction; 7.2 Relevant corrosion processes; 7.3 Effective design principles
7.4 Materials used for protection of the body structure7.5 Empirical vehicle and laboratory comparisons; 7.6 An introduction to electrochemical methods; 7.7 Learning points from Chapter N; 8. Environmental considerations; 8.1 Introduction; 8.2 Effect of body mass and emissions control; 8.3 Life cycle analysis (LCA); 8.4 Recycling and ELV considerations; 8.5 Hygiene; 8.6 BIW design for safety; 8.7 Learning points from Chapter 8; 9. Future trends in automotive body materials; 9.1 Introduction; 9.2 Factors influencing material change in the future - trends and requirements
9.3 Combined effect of above factors on materials utilization within 'expected' and 'accelerated' timescales9.4 Learning points from Chapter 9; index
Record Nr. UNINA-9910824456103321
Davies Geoff  
Amsterdam ; ; Oxford, : Butterworth-Heinemann, 2003
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui