Fractal geography [[electronic resource] /] / André Dauphiné
| Fractal geography [[electronic resource] /] / André Dauphiné |
| Autore | Dauphiné André |
| Pubbl/distr/stampa | London, : ISTE |
| Descrizione fisica | 1 online resource (261 p.) |
| Disciplina | 910.01/514742 |
| Collana | ISTE |
| Soggetto topico |
Geography - Mathematics
Fractals |
| ISBN |
1-118-60317-6
1-299-18776-5 1-118-60302-8 1-118-60316-8 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto |
Cover; Title Page; Copyright Page; Table of Contents; Introduction; Chapter 1. A Fractal World; 1.1. Fractals pervade into geography; 1.1.1. From geosciences to physical geography; 1.1.2. Urban geography: a big beneficiary; 1.2. Forms of fractal processes; 1.2.1. Some fractal forms that make use of the principle of allometry; 1.2.2. Time series and processes are also fractal; 1.2.3. Rank-size rules are generally fractal structures; 1.3. First reflections on the link between power laws and fractals; 1.3.1. Brief introduction into power laws
1.3.2. Some power laws recognized before the fractal era1.4. Conclusion; Chapter 2. Auto-similar and Self-affine Fractals; 2.1. The rarity of auto-similar terrestrial forms; 2.2. Yet more classes of self-affine fractal forms and processes; 2.2.1. Brownian, fractional Brownian and multi-fractional Brownian motion; 2.2.2. Lévy models; 2.2.3. Four examples of generalizations for simulating realistic forms; 2.3. Conclusion; Chapter 3. From the Fractal Dimension to Multifractal Spectrums; 3.1. Two extensions of the fractal dimension: lacunarity and codimension 3.1.1. Some territorial textures differentiated by their lacunarity3.1.2. Codimension as a relative fractal dimension; 3.2. Some corrections to the power laws: semifractals, parabolicfractals and log-periodic distributions; 3.2.1. Semifractals and double or truncated Pareto distributions; 3.2.2. The parabolic fractal model; 3.2.3. Log-periodic distributions; 3.3. A routine technique in medical imaging: fractal scanning; 3.4. Multifractals used to describe all the irregularities of a setdefined by measurement; 3.4.1. Definition and characteristics of a multifractal 3.4.2. Two functions to interpret: generalized dimension spectrumand singularity spectrum3.4.3. An approach that is classical in geosciences but exceptional in social sciences; 3.4.4. Three potential generalizations; 3.5. Conclusion; Chapter 4. Calculation and Interpretation of Fractal Dimensions; 4.1. Test data representing three categories of fractals: black and white maps, grayscale Landsat images and pluviometric chronicle series; 4.2. A first incontrovertible stage: determination of the fractal classof the geographical phenomenon studied 4.2.1. Successive tests using Fourier or wavelet decompositions4.2.2. Decadal rainfall in Barcelona and Beirut are fractionalGaussian noise; 4.3. Some algorithms for the calculation of the fractal dimensionsof auto-similar objects; 4.3.1. Box counting, information and area measurementdimensions for auto-similar objects; 4.3.2. A geographically inconclusive application from perception; 4.4. The fractal dimensions of objects and self-affine processes; 4.4.1. A multitude of algorithms; 4.4.2. High irregularity of decadal rainfall for Barcelona and Beirut; 4.5. Conclusion Chapter 5. The Fractal Dimensions of Rank-size Distributions |
| Record Nr. | UNINA-9910141479203321 |
Dauphiné André
|
||
| London, : ISTE | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Fractal geography / / André Dauphiné
| Fractal geography / / André Dauphiné |
| Autore | Dauphiné André |
| Pubbl/distr/stampa | London, : ISTE |
| Descrizione fisica | 1 online resource (261 p.) |
| Disciplina | 910.01/514742 |
| Collana | ISTE |
| Soggetto topico |
Geography - Mathematics
Fractals |
| ISBN |
9781118603178
1118603176 9781299187764 1299187765 9781118603024 1118603028 9781118603161 1118603168 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto |
Cover; Title Page; Copyright Page; Table of Contents; Introduction; Chapter 1. A Fractal World; 1.1. Fractals pervade into geography; 1.1.1. From geosciences to physical geography; 1.1.2. Urban geography: a big beneficiary; 1.2. Forms of fractal processes; 1.2.1. Some fractal forms that make use of the principle of allometry; 1.2.2. Time series and processes are also fractal; 1.2.3. Rank-size rules are generally fractal structures; 1.3. First reflections on the link between power laws and fractals; 1.3.1. Brief introduction into power laws
1.3.2. Some power laws recognized before the fractal era1.4. Conclusion; Chapter 2. Auto-similar and Self-affine Fractals; 2.1. The rarity of auto-similar terrestrial forms; 2.2. Yet more classes of self-affine fractal forms and processes; 2.2.1. Brownian, fractional Brownian and multi-fractional Brownian motion; 2.2.2. Lévy models; 2.2.3. Four examples of generalizations for simulating realistic forms; 2.3. Conclusion; Chapter 3. From the Fractal Dimension to Multifractal Spectrums; 3.1. Two extensions of the fractal dimension: lacunarity and codimension 3.1.1. Some territorial textures differentiated by their lacunarity3.1.2. Codimension as a relative fractal dimension; 3.2. Some corrections to the power laws: semifractals, parabolicfractals and log-periodic distributions; 3.2.1. Semifractals and double or truncated Pareto distributions; 3.2.2. The parabolic fractal model; 3.2.3. Log-periodic distributions; 3.3. A routine technique in medical imaging: fractal scanning; 3.4. Multifractals used to describe all the irregularities of a setdefined by measurement; 3.4.1. Definition and characteristics of a multifractal 3.4.2. Two functions to interpret: generalized dimension spectrumand singularity spectrum3.4.3. An approach that is classical in geosciences but exceptional in social sciences; 3.4.4. Three potential generalizations; 3.5. Conclusion; Chapter 4. Calculation and Interpretation of Fractal Dimensions; 4.1. Test data representing three categories of fractals: black and white maps, grayscale Landsat images and pluviometric chronicle series; 4.2. A first incontrovertible stage: determination of the fractal classof the geographical phenomenon studied 4.2.1. Successive tests using Fourier or wavelet decompositions4.2.2. Decadal rainfall in Barcelona and Beirut are fractionalGaussian noise; 4.3. Some algorithms for the calculation of the fractal dimensionsof auto-similar objects; 4.3.1. Box counting, information and area measurementdimensions for auto-similar objects; 4.3.2. A geographically inconclusive application from perception; 4.4. The fractal dimensions of objects and self-affine processes; 4.4.1. A multitude of algorithms; 4.4.2. High irregularity of decadal rainfall for Barcelona and Beirut; 4.5. Conclusion Chapter 5. The Fractal Dimensions of Rank-size Distributions |
| Record Nr. | UNINA-9910825960803321 |
Dauphiné André
|
||
| London, : ISTE | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Modèles Géographiques Avec le Langage Mathematica / / André Dauphiné
| Modèles Géographiques Avec le Langage Mathematica / / André Dauphiné |
| Autore | Dauphiné André |
| Pubbl/distr/stampa | London : , : ISTE Editions Ltd., , 2017 |
| Descrizione fisica | 1 online resource (333 pages) |
| Disciplina | 910.0151 |
| Collana | Collection systèmes d'information, web et société |
| Soggetto topico | Geography - Mathematical models |
| ISBN | 1-78406-236-7 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | fre |
| Nota di contenuto | Intro -- Table des matières -- Introduction -- PARTIE 1. Modéliser les relationssociétés-nature -- Introduction de la partie 1 -- Chapitre 1. Paradoxes théoriquesde la géographie classique -- Chapitre 2. Modèles statistiques et probabilistesdes relations sociétés-nature -- Chapitre 3. Modèles de systèmesdynamiques ordinaires -- PARTIE 2. Modéliserles localisations géographiques -- Introduction de la partie 2 -- Chapitre 4. Théories des localisationsgéographiques -- Chapitre 5. Modèles des localisationsgéographiques -- PARTIE 3. Structures spatialeset dynamiques territoriales -- Introduction de la partie 3 -- Chapitre 6. Théoriser les structureset les dynamiques territoriales -- Chapitre 7. Modèlesde points et de champs -- Chapitre 8Modèles de réseaux -- Chapitre 9Modèlesde l'espace géographique -- Chapitre 10.Macro et micro-modèlesde la morphogénie -- Conclusion -- Bibliographie -- Index. |
| Record Nr. | UNINA-9910792915403321 |
Dauphiné André
|
||
| London : , : ISTE Editions Ltd., , 2017 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Modèles Géographiques Avec le Langage Mathematica / / André Dauphiné
| Modèles Géographiques Avec le Langage Mathematica / / André Dauphiné |
| Autore | Dauphiné André |
| Pubbl/distr/stampa | London : , : ISTE Editions Ltd., , 2017 |
| Descrizione fisica | 1 online resource (333 pages) |
| Disciplina | 910.0151 |
| Collana | Collection systèmes d'information, web et société |
| Soggetto topico | Geography - Mathematical models |
| ISBN | 1-78406-236-7 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | fre |
| Nota di contenuto | Intro -- Table des matières -- Introduction -- PARTIE 1. Modéliser les relationssociétés-nature -- Introduction de la partie 1 -- Chapitre 1. Paradoxes théoriquesde la géographie classique -- Chapitre 2. Modèles statistiques et probabilistesdes relations sociétés-nature -- Chapitre 3. Modèles de systèmesdynamiques ordinaires -- PARTIE 2. Modéliserles localisations géographiques -- Introduction de la partie 2 -- Chapitre 4. Théories des localisationsgéographiques -- Chapitre 5. Modèles des localisationsgéographiques -- PARTIE 3. Structures spatialeset dynamiques territoriales -- Introduction de la partie 3 -- Chapitre 6. Théoriser les structureset les dynamiques territoriales -- Chapitre 7. Modèlesde points et de champs -- Chapitre 8Modèles de réseaux -- Chapitre 9Modèlesde l'espace géographique -- Chapitre 10.Macro et micro-modèlesde la morphogénie -- Conclusion -- Bibliographie -- Index. |
| Record Nr. | UNINA-9910827151103321 |
Dauphiné André
|
||
| London : , : ISTE Editions Ltd., , 2017 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||