Vai al contenuto principale della pagina

Climate Change Impacts on Soil-Plant-Atmosphere Continuum



(Visualizza in formato marc)    (Visualizza in BIBFRAME)

Autore: Pathak Himanshu Visualizza persona
Titolo: Climate Change Impacts on Soil-Plant-Atmosphere Continuum Visualizza cluster
Pubblicazione: Singapore : , : Springer Singapore Pte. Limited, , 2024
©2024
Edizione: 1st ed.
Descrizione fisica: 1 online resource (792 pages)
Altri autori: ChatterjeeDibyendu  
SahaSaurav  
DasBappa  
Nota di contenuto: Intro -- Preface -- Contents -- Contributors -- Part I Climate Change and Soil Environment -- 1 Impacts of Climate Change on Soil Processes -- 1.1 Introduction -- 1.2 Climate Change Scenarios and Soil Processes -- 1.3 Climate Change Impacts on Various Soil Processes -- 1.3.1 Soil Formation -- 1.3.2 Transformation of Clay Minerals -- 1.3.3 Soil Erosion -- 1.3.4 Soil Structural Degradation -- 1.3.5 Soil Hydrological Process -- 1.3.6 Soil Air and Heat Regime -- 1.3.7 Nutrient Cycles (C, N, P, and S) -- 1.3.8 Ion Exchange -- 1.3.9 Nutrient Availability -- 1.3.10 Acidification -- 1.3.11 Salinization -- 1.3.12 Alkalization -- 1.3.13 Microbial Changes -- 1.3.14 Rhizosphere Chemistry -- 1.4 Soil Function and Climate Change -- 1.4.1 Food and Biomass Production -- 1.4.2 Storing, Filtering, Transforming, and Recycling Water and Nutrients -- 1.4.3 Providing Habitat and Gene Pool -- 1.4.4 Serving as Soil Organic Carbon (SOC) Pool -- 1.4.5 Providing Raw Materials -- 1.4.6 Serving as a Physical and Cultural Environment for the Mankind -- 1.4.7 Storing the Geological and Cultural Heritage -- 1.5 Potential of Soil Processes in Adaptation and Mitigation of Climate Change -- 1.5.1 Carbon Sequestration -- 1.5.2 Soil Aggregation -- 1.5.3 Soil Porosity -- 1.5.4 Humification -- 1.5.5 Podzolization -- 1.5.6 Translocation and Burial of Carbon Enriched Sediments -- 1.5.7 Soil Water Regime -- 1.5.8 Nitrification and Denitrification -- 1.5.9 Auto-reclamation -- 1.6 Conclusion -- References -- 2 Nutrient Cycling and Climate Change -- 2.1 Introduction -- 2.2 Carbon (C) -- 2.3 Nitrogen (N) -- 2.4 Phosphorus (P) -- 2.5 Potassium (K) -- 2.6 Calcium (Ca), Magnesium (Mg), and Sulphur (S) -- 2.7 Micronutrients -- 2.8 Conclusion -- References -- 3 Soil Carbon Sequestration in the Context of Climate Change -- 3.1 Introduction -- 3.2 Carbon Sequestration and Climate Change Mitigation.
3.3 Best Management Practices for Agricultural Soils -- 3.3.1 Agroforestry -- 3.3.2 Zero Tillage -- 3.3.3 Crop Residue Retention -- 3.3.4 Crop Diversification -- 3.3.5 Integrated Nutrient Management (INM) -- 3.3.6 Green Manure -- 3.3.7 Water Management -- 3.3.8 Biochar -- 3.3.9 Organic Agriculture -- 3.3.10 Eco-Restoration of Degraded Lands -- 3.4 Best Management Practices for Grassland Soil -- 3.4.1 Intensive Grazing Management -- 3.4.2 Production Input Uses -- 3.4.3 Suitable Forage Grasses and Legumes -- 3.4.4 Grassland Disturbance and Management -- 3.4.5 Fire Management -- 3.4.6 Degraded Land Restoration -- 3.5 Best Management Practices for Forest Soil -- 3.5.1 Afforestation or Reforestation -- 3.5.2 Conversion of Primary Forest -- 3.5.3 Forest Harvesting -- 3.5.4 Collection of Harvest Residues -- 3.5.5 Minimize Soil Disturbance -- 3.5.6 Nitrogen Application -- 3.5.7 N-Fixing Species Selection -- 3.5.8 Selection of Appropriate Tree Species -- 3.5.9 Tree Species Diversity Management -- 3.5.10 Forest Stands Density -- 3.5.11 Herbivory Regulation -- 3.5.12 Regulation on Removal of Forest Litter and Biomass -- 3.5.13 Management of Forest Fire -- 3.6 Best Management Practices for Wetlands -- 3.6.1 Wetland Protection -- 3.6.2 Wetland Restoration -- 3.6.3 Wetland Creation -- 3.7 Engineering and Chemical Techniques for Enhanced C Sequestration -- 3.7.1 Enhanced Weathering of Rocks -- 3.7.2 Mineral Carbonation -- 3.7.3 Direct Air Capture -- 3.8 Conclusions -- References -- 4 Soil Health and Climate Change -- 4.1 Introduction -- 4.2 Soil Health: Concept, Definition, Progress Made, Soil Health Indicators, Sensitive Indicators -- 4.3 Climate Change: Brief History, Projections -- 4.4 Consequences of Changing Climate on Soil Health -- 4.4.1 Soil Physical Health -- 4.4.2 Soil Chemical Health -- 4.4.3 Soil Biological Health.
4.4.4 Overall Climate Change Impact on Soil Health -- 4.5 Selection of Soil Health Key Indicators Under a Scenario of Climate Change -- 4.6 Management of Soil Health -- 4.6.1 Soil Organic Carbon -- 4.6.2 Conservation Agriculture -- 4.6.3 Organic Farming -- 4.6.4 Integrated Nutrient Management (INM) -- 4.6.5 Biochar -- 4.6.6 Crop Residue Retention -- 4.6.7 Crop Diversification -- 4.6.8 Resource Conservation Technologies (RCTs) -- 4.6.9 Crop Rotation -- 4.7 Sensitive Indicator of Soil Health Under Changing Climate -- 4.8 Pitfalls in Management of Soil Health -- 4.9 Conclusion -- References -- 5 Climate Change Impact on Soil Erosion and Land Degradation -- 5.1 Introduction -- 5.2 Factors Affecting Soil Erosion -- 5.2.1 Energy -- 5.2.2 Resistance -- 5.2.3 Protection -- 5.3 Soil Erosion and Climate Change -- 5.4 Change in Rainfall Erosivity (R-factor) Due to Climate Change -- 5.5 Impact of Climate Change on Soil Erosion from Croplands -- 5.6 Land Degradation in Drylands -- 5.7 Impact of Climate Change on Soil C Vis-A-Vis Soil Erosion -- 5.8 Climate Change and Soil Biodiversity: How Does It Impact Erosion? -- 5.9 Policies and Programs in the Promenade of Mitigating CC -- 5.10 Conclusions -- References -- 6 Response and Behavior of Paddy Soil Microbiota Towards Environmental Change -- 6.1 Introduction -- 6.2 Climate Change and Soil Microbiome: A Priority Research -- 6.3 Impact of Drivers of Climate Change on Paddy Soil Microbiota -- 6.3.1 Elevation in Carbon Dioxide (eCO2) Levels -- 6.3.2 Rise in Atmospheric Temperature -- 6.3.3 Change in Moisture Regime -- 6.3.4 Imbalanced Fertilizer Application -- 6.3.5 Changes in Soil Reaction -- 6.3.6 Imbalanced Pesticide Application -- 6.3.7 Interaction Effect of Environmental Change Factors -- 6.4 Mitigation Strategies -- 6.5 Conclusion -- References.
7 Contemporary Use of Sensors for Soil Qualitative and Quantitative Assessment in the Context of Climate Change -- 7.1 Introduction -- 7.2 Laboratory-Based Analytical Methods for Assessing Soil Fertility -- 7.3 Problems Faced by Conventional Soil Testing Service in India -- 7.4 Proximal Soil Sensing Approaches -- 7.5 Usage of PXRF as a Sensor for the Advancement of Soil Science -- 7.5.1 Working Principle of X-Ray Fluorescence Spectrometer (XRF) -- 7.5.2 Use of PXRF for Soil Fertility Characterization -- 7.6 Use of DRS for Rapid Soil Characterization -- 7.7 Use of Soil Color for Assessing Soil Fertility -- 7.8 New Age Image and Color Sensors for Soil Characterization -- 7.9 Use of Android-Based Smartphone Sensors -- 7.9.1 Use of Smartphone as a Proximal Soil Sensor -- 7.9.2 Colorimetric and Spectrophotometric Analysis of Nutrients via Smartphone Sensor -- 7.9.3 Mobile Applications for Smartphone-Based Colorimetric Soil and Water Analysis -- 7.10 Sensor-Based NO3− and Phosphate Determination in Soil and Water -- 7.11 Digital Soil Mapping Approaches for Rapid Soil Information and Resource Map Generation -- 7.12 Linkage of Sensors Based Soil Studies with Climate Change -- 7.13 Conclusion -- References -- 8 Assessing Spatially-Distributed Soil Moisture Under Changing Land Uses and Climate -- 8.1 Introduction -- 8.2 The Modeling Framework -- 8.2.1 Enhanced Hillslope Storage Boussinesq Model -- 8.2.2 Forecasting Approach for Future Land Use -- 8.2.3 Forecasting Approach for Future Climate -- 8.3 Study Area and Datasets -- 8.4 Basin-Scale Climate Forecasts in Three Time-Horizons -- 8.5 Basin-Scale LULC Forecasts in Three Time-Horizons -- 8.6 Setting Up of eHSB Model -- 8.7 Assessment of Spatially-Distributed Soil Moisture Storage -- 8.8 Summary and Conclusions -- References -- 9 Prospect of Organic Agriculture in the Present Climate Change Scenario.
9.1 Introduction -- 9.2 Status of Organic Agriculture -- 9.3 Organic Agriculture and Climate Change-The Linkage -- 9.4 Potential of Organic Agriculture in Mitigating Climate Change -- 9.4.1 Reducing the GHG Emissions -- 9.4.2 Reduced Discharges of Nitrous Oxide (N2O) -- 9.4.3 Reducing Methane (CH4) Emissions -- 9.4.4 Organic Farming Sequestering Carbon in the Soil -- 9.4.5 Reducing the Use of Fossil Fuels and Energy Inputs -- 9.5 Mitigative and Adaptive Approaches for the Organic Agriculture System to Reduce Greenhouse Gas (GHG) Emissions -- 9.5.1 Mitigation Approaches -- 9.5.2 Adaptive Approaches -- 9.6 Limitation of Organic Agriculture in Context of Climate Change -- 9.6.1 Land-Use Efficiency -- 9.6.2 Emissions from Manure -- 9.6.3 Energy Usage and Greenhouse Gas Emissions -- 9.6.4 Leaching of Nutrients and Water Quality -- 9.7 Conclusion -- References -- 10 Impact of Conservation Agriculture on Soil Health and Environmental Sustainability -- 10.1 Introduction -- 10.2 Conventional Versus Conservation Agriculture -- 10.3 Conservation of Agriculture and Soil Health -- 10.3.1 Soil Bulk Density -- 10.3.2 Penetration Resistance -- 10.3.3 Soil Aggregation -- 10.3.4 Soil Hydraulic Parameters: Hydraulic Conductivity and Infiltration -- 10.3.5 Soil Porosity -- 10.3.6 Soil Water Retention -- 10.4 Conservation Agriculture and Environmental Sustainability -- 10.4.1 Preserving Soil Organic Carbon -- 10.4.2 Reducing Emission of Greenhouse Gas and Environmental Pollution -- 10.4.3 Preserve Biodiversity -- 10.5 Impact of Conservation Tillage on Plant Root Parameters -- 10.6 Crop Yield Under Conservation Tillage -- 10.7 Conservation Agriculture in Hill Agroecosystem -- 10.8 Constraints of Conservation Agriculture -- 10.9 Conclusion -- References -- Part II Climate Change and Crop Ecophysiology.
11 Prospects of Modified Plant Micro-Climate in Global Climate Change Research.
Titolo autorizzato: Climate Change Impacts on Soil-Plant-Atmosphere Continuum  Visualizza cluster
ISBN: 981-9979-35-8
Formato: Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione: Inglese
Record Nr.: 9910847075203321
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Serie: Advances in Global Change Research Series