Vai al contenuto principale della pagina
| Autore: |
Das Debashish
|
| Titolo: |
Optimization algorithms in machine learning : a meta-heuristics perspective / / by Debashish Das, Ali Safaa Sadiq, Seyedali Mirjalili
|
| Pubblicazione: | Singapore : , : Springer, , [2025] |
| ©2025 | |
| Descrizione fisica: | 1 online resource (xvii, 181 pages) : illustrations |
| Disciplina: | 006.3 |
| Soggetto topico: | Computational intelligence |
| Machine learning | |
| Mathematical optimization | |
| Computational Intelligence | |
| Machine Learning | |
| Optimization | |
| Persona (resp. second.): | SadiqAli Safaa |
| MirjaliliSeyedali | |
| Nota di bibliografia: | Includes bibliographical references. |
| Nota di contenuto: | Challenges and opportunities in Machine Learning using optimization techniques -- Optimization methods: traditional versus stochastic -- Heuristic and meta-heuristic optimization algorithms -- A comprehensive review of evolutionary algorithms and swarm intelligence methods -- Artificial Neural Networks: structure and learning -- A survey of Neural Networks trained by optimization algorithms and meta-heuristics. |
| Sommario/riassunto: | This book explores the development of several new learning algorithms that utilize recent optimization techniques and meta-heuristics. It addresses well-known models such as particle swarm optimization, genetic algorithm, ant colony optimization, evolutionary strategy, population-based incremental learning, and grey wolf optimizer for training neural networks. Additionally, the book examines the challenges associated with these processes in detail. This volume will serve as a valuable reference for individuals in both academia and industry. . |
| Titolo autorizzato: | Optimization Algorithms in Machine Learning ![]() |
| ISBN: | 9789819638499 |
| Formato: | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione: | Inglese |
| Record Nr.: | 9911003689003321 |
| Lo trovi qui: | Univ. Federico II |
| Opac: | Controlla la disponibilità qui |