top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Dynamic Data Driven Applications Systems : 5th International Conference, DDDAS/Infosymbiotics for Reliable AI 2024, New Brunswick, NJ, USA, November 6–8, 2024, Proceedings / / edited by Erik Blasch, Frederica Darema, Dimitris Metaxas
Dynamic Data Driven Applications Systems : 5th International Conference, DDDAS/Infosymbiotics for Reliable AI 2024, New Brunswick, NJ, USA, November 6–8, 2024, Proceedings / / edited by Erik Blasch, Frederica Darema, Dimitris Metaxas
Autore Blasch Erik
Edizione [1st ed. 2026.]
Pubbl/distr/stampa Cham : , : Springer Nature Switzerland : , : Imprint : Springer, , 2026
Descrizione fisica 1 online resource (664 pages)
Disciplina 003.3
Altri autori (Persone) DaremaFrederica
MetaxasDimitris
Collana Lecture Notes in Computer Science
Soggetto topico Computer simulation
Computers, Special purpose
Quantitative research
Dynamics
Nonlinear theories
Computer Modelling
Special Purpose and Application-Based Systems
Data Analysis and Big Data
Applied Dynamical Systems
ISBN 9783031948954
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto -- Introduction to the Proceedings. -- Introduction to the DDDAS2024 Conference Infosymbiotics/DDDAS and AI: Towards Reliable AI. -- Plenary Papers. -- Materials, Aerospace, and Geomechanics Systems Methods. -- Online Fault Detection for Metal Additive Manufacturing with Data­ Driven Time Series Models. -- Weight Decay Optimized Unsupervised Autoencoder Based Anomaly Detection in Uncontrolled Dynamic Structural Health Monitoring. -- Novel Deep Learning Image Registration Techniques with Application to Microscopy Images of Metal Alloys. -- A Probabilistic Machine Learning Pipeline Using Topological Descriptors for Real-Time State Estimation of High-Rate Dynamic Systems. -- Information Fusion of Ultrasonic Waves and Low-Frequency Vibrations: Leveraging Probabilistic Machine Learning and Stochastic Time Series Models for Structural Awareness. -- Earthen Embankment Monitoring using LiDAR data by Randomized Consensus of Topological Data Analysis. -- Environmental Systems-Assessment/Response, DT Methods. -- Large Language Models for Explainable Decisions in Dynamic Digital Twins. -- DDDAS Probability Learning for Natural Disaster Change Detection. -- Dynamic Data-Driven Digital Twin Testbed for Enhanced First Responder Training and Communication. -- A Dynamic Data Driven Agent Based Model for Characterizing the Space Utilization of Asian Elephants in Response to Water Availability. -- Adaptive Multi-stage Sensor Fusion under Neuro-symbolic Framework for The Multi-modal Ranging System in Adverse Weather Conditions. -- Towards a Dynamic Data Driven Al Regional Weather Forecast Model. -- Autonomous Uncrewed Aircraft for Mobile Operations in Severe Weather. -- Autonomous Planning for Targeted Observation of Severe Weather. -- Security Systems –Methods, infrastructures, applications. -- Dynamic Data Driven Security Framework for Industrial Control Networks using Programmable Switches. -- Security of RF Sensing and Imaging Systems in the Age of Digital Twins. -- CCTV-Gun: Benchmarking Handgun Detection in CCTV Images. -- D4: Dynamic Data-Driven Discovery of Adversarial Vehicle Maneuvers. -- Data Poisoning: An Overlooked Threat to Power Grid Resilience. -- GAN-Based Approach for Detecting Energy Deception Attacks in CPS. -- Adversarial Attacks and Data-Driven Dynamic Outlier Detection Systems. -- Utilizing Matrix Profile with the DDDAS Framework for Anomaly Detection in Nuclear Security. -- Development of an Edge Resilient ML Ensemble to Tolerate ICS Adversarial Attacks. -- Anomaly Detection Transformer: A Novel Approach for Time Series Analysis of Wearable Health Data. -- A Spiral-Theoretic Approach for Trustworthy Al/ML in DDDAS. -- Tracking Systems, Automation and Robotics. -- Data-Driven Pixel Control: Challenges and Prospects. -- Dynamic Data-Driven Approach for LEO PNT Selection of Satellites with Poorly Known Ephemerides. -- Improving Physics-based Motion and Physical Parameter Estimations of a Tumbling, Non-cooperative Space Object Through DDDAS. -- An Expected KLD Based Censoring Strategy for Target Tracking in Distributed Sensor Networks. -- Reliable Al for UAVs Through Control/Perception Co-Design. -- Constraint-Aware Diffusion Models for Trajectory Optimization. -- Data-Driven Dynamics of Robot Locomotion on Granular Media. -- Improving Physics-based Motion and Physical Parameter Estimations of a Tumbling, Non-cooperative Space Object Through DDDAS. -- A Physics-Enhanced Deep Learning Model for Fast Prediction of the Behavior of a Forced Dynamic System. -- Edge-to-Cloud Al-Assisted Augmented Reality for Robust and Real-time Assistance to Operators. -- CAD Model Guided Semantic Segmentation for Radar Micro-UAV Signature Synthesis Across Different Clutter Environments Transformer: A Novel Approach for Time Series Analysis of Wearable Health Data. -- Towards Reliable Neural Optimizers: A Permutation Equivariant Neural Approximation for Information Processing Applications. -- Fast Topological Data Analysis Feature for Nonstationary Time Series. -- Predictive Modeling of Application Runtime in Dragonfly Systems. -- Adaptive Data Driven Network Slicing and Resource Blocks Assignment using Deep Reinforcement Learning. -- Explainable Diffusion Model via Schroedinger Bridge in Multimodal Image Translation. -- Using Mamba for Modeling Dynamical Systems in a Limited Data Scenario. -- Application of a state space based neural network model for Uncertainty Propagation in dynamical systems. -- From Positive to Negative: On the Role of Negative Data in Enhancing Generative Models for Engineering Constraint Satisfaction.
Record Nr. UNISA-996673178803316
Blasch Erik  
Cham : , : Springer Nature Switzerland : , : Imprint : Springer, , 2026
Materiale a stampa
Lo trovi qui: Univ. di Salerno
Opac: Controlla la disponibilità qui
Dynamic Data Driven Applications Systems : 4th International Conference, DDDAS 2022, Cambridge, MA, USA, October 6-10, 2022, Proceedings
Dynamic Data Driven Applications Systems : 4th International Conference, DDDAS 2022, Cambridge, MA, USA, October 6-10, 2022, Proceedings
Autore Blasch Erik
Edizione [1st ed.]
Pubbl/distr/stampa Cham : , : Springer, , 2024
Descrizione fisica 1 online resource (434 pages)
Altri autori (Persone) DaremaFrederica
AvedAlex
Collana Lecture Notes in Computer Science Series
ISBN 3-031-52670-8
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Intro -- Preface -- Organization -- Contents -- Introduction to the DDDAS2022 Conference -- Introduction to the DDDAS2022 Conference Infosymbiotics/Dynamic Data Driven Applications Systems -- 1 DDAS Developments -- 2 DDDAS Concept Review -- 3 DDDAS2022 Conference - Proceedings Outline -- 4 DDDAS2022 - Main Track Plenary Presentations Overview -- 4.1 Space Systems -- 4.2 Aerospace Systems -- 4.3 Networked Systems and Security -- 4.4 Deep Learning Systems -- 4.5 Estimation and Tracking -- 5 Summary Remarks -- References -- Main-Track Plenary Presentations - Aerospace -- Generalized Multifidelity Active Learning for Gaussian-process-based Reliability Analysis -- 1 Introduction -- 2 Multifidelity Active Learning for Reliability Analysis -- 2.1 Multifidelity Active Learning Method Overview -- 2.2 Sample Location: EFF/AK-MCS/TIMSE -- 2.3 Information Source: Weighted Lookahead Information Gain -- 3 Numerical Experiment: Reliability Analysis of Acoustic Horn -- 4 Conclusions and Future Directions -- References -- Essential Properties of a Multimodal Hypersonic Object Detection and Tracking System -- 1 Introduction -- 2 Sensing Modalities for Hypersonic Detection -- 2.1 Radar -- 2.2 Thermal -- 3 Tracking -- 4 Iterative Sensor Operation in DDDAS System -- 5 Conclusion -- 6 Disclaimer -- References -- Dynamic Airspace Control via Spatial Network Morphing -- 1 Introduction -- 2 Background -- 3 Structured Airspace and Aircraft Trajectories -- 4 A DDDAS Approach to Multiple Aircraft Deconfliction -- 5 Experiments -- 6 Conclusion -- References -- On Formal Verification of Data-Driven Flight Awareness: Leveraging the Cramér-Rao Lower Bound of Stochastic Functional Time Series Models -- 1 Introduction -- 2 Functionally Pooled Time Series Models -- 2.1 CRLB Formulation for VFP-AR Models -- 3 Machine-Checked Proof of the CRLB Theorem.
4 Experimental Results and Discussion -- 5 Conclusions -- References -- Coupled Sensor Configuration and Path-Planning in a Multimodal Threat Field -- 1 Introduction -- 2 Problem Formulation -- 3 Multimodal Field Estimation -- 4 Coupled Sensor Configuration -- 5 Results and Discussion -- 5.1 Demonstrative Example -- 6 Conclusion -- References -- Main-Track Plenary Presentations - Space Systems -- Geometric Solution to Probabilistic Admissible Region Based Track Initialization -- 1 Introduction -- 2 Geometric Solution to Probabilistic Admissible Region -- 2.1 Probabilistic Admissible Region -- 2.2 G-PAR Algorithm -- 3 G-PAR for Short-Arc Radar Observations -- 3.1 Initialization: G-PAR MC Particle Cloud -- 4 G-PAR for Angles-Only, Short-Arc, Telescope Observation -- 4.1 Initialization: G-PAR MC Particle Cloud -- 5 Conclusion -- References -- Radar Cross-Section Modeling of Space Debris -- 1 Introduction -- 2 Mie Scattering Modeling Motivation -- 3 Bistatic Radar Characteristics and RCS -- 3.1 Forward Scatter Geometry -- 3.2 Radar Cross Section (RCS) -- 3.3 Velocity-Induced Doppler Shift -- 3.4 Rotation-Induced Micro-doppler Shift -- 4 Simulation Results -- 4.1 RCS vs. Silhouette Area -- 4.2 Translation (Velocity-Induced) Doppler Shift -- 4.3 Translation-Doppler-Shifted RCS -- 4.4 Micro-doppler (Rotation-Induced) Shift -- 4.5 Translation- and Rotation-Shifted RCS -- 5 Conclusions -- References -- High-Resolution Imaging Satellite Constellation -- 1 Introduction -- 2 Model of Satellite Constellation Imaging -- 3 Imaging Algorithm and Resolution -- 4 Simulation Results -- 5 Conclusions -- References -- Main-Track Plenary Presentations - Network Systems -- Reachability Analysis to Track Non-cooperative Satellite in Cislunar Regime -- 1 Introduction -- 2 Methodology -- 3 Results -- 4 Limits of the Method -- 5 Conclusions -- References.
Physics-Aware Machine Learning for Dynamic, Data-Driven Radar Target Recognition -- 1 Introduction -- 2 Physics-Based Models for μD Signature Synthesis -- 3 Adversarial Learning-Based μD Signature Synthesis -- 4 Physics-Aware GAN Design -- 5 Conclusion -- References -- DDDAS for Optimized Design and Management of 5G and Beyond 5G (6G) Networks -- 1 Introduction -- 2 Background of 5G and 6G Technologies -- 3 DDDAS for 5G Network Design and Optimization -- 3.1 Case Study I: Transmission of Multimedia Content to Mobile Wireless Users -- 3.2 Case Study II: Collaborative Microgrids -- 4 Conclusion -- References -- Plenary Presentations - Systems Support Methods -- DDDAS-Based Learning for Edge Computing at 5G and Beyond 5G -- 1 Introduction -- 2 Proposed Joint Optimization Approach -- 2.1 Task Scheduling and Offloading (TSO) -- 2.2 Microgrid Operational Planning -- 3 Simulation Results and Analysis -- 4 Conclusion -- References -- Monitoring and Secure Communications for Small Modular Reactors -- 1 Introduction -- 2 Model Development and Results -- 2.1 Liquid Sodium Vessel Monitoring Using LSTM Models -- 2.2 Secure Communications Using BB84 and AES Protocols -- 3 Conclusions -- References -- Data Augmentation of High-Rate Dynamic Testing via a Physics-Informed GAN Approach -- 1 Introduction -- 2 Theory Background -- 2.1 Dataset and Preprocessing -- 2.2 Convolutional Variational Autoencoders (CVAE) -- 2.3 FEM Based Conditional Generative Adversarial Networks (cGAN) -- 2.4 Support Vector Machine (SVM) -- 3 Validation of Damage Classifications -- 3.1 Convolutional Variational Autoencoder (CVAE) -- 3.2 FEM Based Conditional Generative Adversarial Network -- 3.3 Classification Results -- 4 Conclusions -- References -- Unsupervised Wave Physics-Informed Representation Learning for Guided Wavefield Reconstruction -- 1 Introduction -- 1.1 Overview.
2 Wave-Informed Regression Methodology -- 2.1 Mean Squared Error Loss -- 2.2 Wave-Informed Loss -- 2.3 Mode Number Loss -- 2.4 Wave-Informed Regression -- 2.5 Wave-Informed Algorithm -- 3 Simulation Setup -- 4 Results -- 5 Conclusions -- References -- Passive Radio Frequency-Based 3D Indoor Positioning System via Ensemble Learning -- 1 Introduction -- 2 Frequency-Adaptive PIPS -- 3 Experiment and Results -- 3.1 Experimental Setup -- 3.2 Results and Evaluation -- 4 Discussion -- 5 Conclusion -- References -- Plenary Presentations - Deep Learning -- Deep Learning Approach for Data and Computing Efficient Situational Assessment and Awareness in Human Assistance and Disaster Response and Battlefield Damage Assessment Applications -- 1 Introduction -- 2 Methodology -- 2.1 DDDAS -- 2.2 IP2CL -- 3 IP2CL Applications -- 3.1 IP2CL Applications in Semantic Segmentation -- 3.2 Patch-Based Damage Classification -- 4 Conclusion -- References -- SpecAL: Towards Active Learning for Semantic Segmentation of Hyperspectral Imagery -- 1 Introduction -- 2 Related Work -- 3 Methodology -- 3.1 Data Utilization -- 3.2 Neural Network Design -- 3.3 Acquisition Factor -- 4 Experiments and Results -- 4.1 Hyperparameters -- 4.2 Results -- 5 Conclusion -- References -- Multimodal IR and RF Based Sensor System for Real-Time Human Target Detection, Identification, and Geolocation -- 1 Introduction -- 2 System Architecture -- 2.1 RF Subsystem -- 2.2 IR Subsystem -- 2.3 Sensor System Integration -- 3 Experimental Results -- 4 Conclusion -- References -- Learning Interacting Dynamic Systems with Neural Ordinary Differential Equations -- 1 Introduction -- 2 Related Work -- 2.1 Neural Ordinary Differential Equations -- 2.2 Interacting Systems -- 3 Methodology -- 3.1 Problem Formulation and Notation -- 3.2 ISODE -- 4 Experiments -- 5 Conclusion -- References.
Relational Active Feature Elicitation for DDDAS -- 1 Introduction -- 2 Interactive Feature Elicitation for DDDAS -- 2.1 Preliminary Results -- 3 Conclusion -- References -- Explainable Human-in-the-Loop Dynamic Data-Driven Digital Twins -- 1 Introduction -- 2 Background and Related Work -- 3 Motivating Example -- 4 A Reference Architecture for Explainable Digital Twins Leveraging DDDAS Principles -- 4.1 Explainable Decisions for Human-in-the-Loop Digital Twins -- 5 Discussion -- 5.1 Trade-Off Analysis -- 5.2 Architecture Evaluation -- 6 Conclusion -- References -- Plenary Presentations - Tracking -- Transmission Censoring and Information Fusion for Communication-Efficient Distributed Nonlinear Filtering -- 1 Introduction -- 2 Jeffreys Divergence Based Sensor Censoring -- 2.1 Jeffreys Divergence -- 2.2 Evaluation of Jeffreys Divergence -- 3 Estimation of Posterior PDFs via GMM -- 4 Fusion of Gaussian Mixtures -- 5 Numerical Results for a Radar Tracking Example -- 5.1 System Model -- 5.2 Performance Evaluation in a Two-Radar Network -- 6 Conclusion -- References -- Distributed Estimation of the Pelagic Scattering Layer Using a Buoyancy Controlled Robotic System -- 1 Introduction -- 2 Preliminary -- 2.1 Perron-Frobenius Operator -- 2.2 Ensemble Kalman Filter -- 3 Estimation of the Scattering Layer -- 4 Numerical Results -- 5 Conclusion -- References -- Towards a Data-Driven Bilinear Koopman Operator for Controlled Nonlinear Systems and Sensitivity Analysis -- 1 Introduction -- 2 Continuous Bilinear System Identification with Specialized Input -- 3 Numerical Simulations -- 3.1 Hovering Helicopter -- 3.2 Controlled Duffing Oscillator -- 4 Conclusion -- References -- Main-Track Plenary Presentations - Security -- Tracking Dynamic Gaussian Density with a Theoretically Optimal Sliding Window Approach -- 1 Introduction -- 2 Problem Formulation and Algorithm.
3 Theoretical Result: Optimal Weight Sequence.
Record Nr. UNISA-996587859803316
Blasch Erik  
Cham : , : Springer, , 2024
Materiale a stampa
Lo trovi qui: Univ. di Salerno
Opac: Controlla la disponibilità qui
Dynamic Data Driven Applications Systems : 4th International Conference, DDDAS 2022, Cambridge, MA, USA, October 6–10, 2022, Proceedings / / edited by Erik Blasch, Frederica Darema, Alex Aved
Dynamic Data Driven Applications Systems : 4th International Conference, DDDAS 2022, Cambridge, MA, USA, October 6–10, 2022, Proceedings / / edited by Erik Blasch, Frederica Darema, Alex Aved
Edizione [1st ed. 2024.]
Pubbl/distr/stampa Cham : , : Springer Nature Switzerland : , : Imprint : Springer, , 2024
Descrizione fisica 1 online resource (434 pages)
Disciplina 005.7
Collana Lecture Notes in Computer Science
Soggetto topico Computer simulation
Computers, Special purpose
Quantitative research
Dynamics
Nonlinear theories
Computer Modelling
Special Purpose and Application-Based Systems
Data Analysis and Big Data
Applied Dynamical Systems
ISBN 3-031-52670-8
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto DDDAS2022 Main-Track Plenary Presentations -- Aerospace I -- Generalized multifidelity active learning for Gaussian-process-based reliability analysis -- Essential Properties of a Multimodal Hypersonic Object Detection and Tracking System -- Aerospace II -- Dynamic Airspace Control via Spatial Network Morphing -- Towards the formal verification of data-driven flight awareness: Leveraging the Cramér-Rao lower bound of stochastic functional time series models -- Coupled Sensor Configuration and Path-Planning in a Multimodal Threat Field -- Space Systems -- Probabilistic Admissible Region Based Track Initialization -- Radar cross-section modeling of space debris -- High Resolution Imaging Satellite Constellation -- Network Systems -- Reachability Analysis to Track Non-cooperative Satellite in Cislunar Regime -- Physics-Aware Machine Learning for Dynamic, Data-Driven Radar Target Recognition -- DDDAS for Optimized Design and Management of Wireless Cellular Networks -- Systems Support Methods -- DDDAS-based Learning for Edge Computing at 5G and Beyond 5G -- Monitoring and Secure Communications for Small Modular Reactors -- Data Augmentation of High-Rate Dynamic Testing via a Physics-Informed GAN Approach -- Unsupervised Wave Physics-Informed Representation Learning for Guided Wavefield Reconstruction -- Passive Radio Frequency-based 3D Indoor Positioning System via Ensemble Learning -- Deep Learning - I -- Deep Learning Approach for Data and Computing Efficient Situational Assessment and Awareness in Human Assistance and Disaster Response and Damage Assessment Applications -- SpecAL: Towards Active Learning for Semantic Segmentation of Hyperspectral Imagery -- Multimodal IR and RF based sensor system for real-time human target detection, identification, and Geolocation -- Deep Learning - II -- Learning Interacting Dynamic Systems with Neural Ordinary Differential Equations -- Relational Active Feature Elicitation for DDDAS -- Explainable Human-in-the-loop Dynamic Data-Driven Digital Twins -- Tracking -- Transmission Censoring and Information Fusion for Communication-Efficient Distributed Nonlinear Filtering -- Distributed Estimation of the Pelagic Scattering Layer using a Buoyancy Controlled Robotic System -- Towards a data-driven bilinear Koopman operator for controlled nonlinear systems and sensitivity analysis -- Security -- Tracking Dynamic Gaussian Density with a Theoretically Optimal Sliding Window Approach -- Dynamic Data-Driven Digital Twins for Blockchain Systems -- Adversarial Forecasting through Adversarial Risk Analysis within a DDDAS Framework -- Distributed Systems -- Power Grid Resilience: Data Gaps for Data-Driven Disruption Analysis -- Attack-resilient Cyber-physical System State Estimation for Smart Grid Digital Twin Design -- Applying DDDAS Principles for Realizing Optimized and Robust Deep Learning Models at the Edge -- Keynotes -- Keynotes Overview -- DDDAS for Systems Analytics in Applied Mechanics -- Computing for Emerging Aerospace Autonomous Vehicles -- From genomics to therapeutics: Single-cell dissection and manipulation of disease circuitry -- Data Augmentation to Improve Adversarial Robustness of AI-Based Network Security Monitoring -- Improving Predictive Models for Environmental Monitoring using Distributed Spacecraft Autonomy -- Towards Continual Unsupervised Data Driven Adaptive Learning -- DDDAS2022 Main-Track: Wildfires Panel -- Wildfires Panel Overview -- Using Dynamic Data Driven Cyberinfrastructure for Next Generation Disaster Intelligence -- Simulating large wildland & WUI fires with a physics-based weather-fire behavior model: Understanding, prediction, and data-shaped products -- Autonomous Unmanned Aerial Vehicle systems in Wildfire Detection and Management-Challenges and Opportunities -- Role of Autonomous Unmanned Aerial Systems in Prescribed Burn Projects -- Towards a Dynamic Data Driven Wildfire Digital Twin (WDT): Impact on Deforestation, Air Quality and Cardiopulmonary Disease -- Earth System Digital Twin for Air Quality -- Dynamic Data Driven Applications for Atmospheric Monitoring and Tracking -- Workshop on Climate, Life, Earth, Planets -- Dynamic Data-Driven Downscaling to Quantify Extreme Rainfall and Flood Loss Risk -- DDDAS 2022 Conference Agenda -- Agenda, DDDAS 2022, October 6-10. -- .
Record Nr. UNINA-9910841872703321
Cham : , : Springer Nature Switzerland : , : Imprint : Springer, , 2024
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Dynamic Data Driven Applications Systems [[electronic resource] ] : Third International Conference, DDDAS 2020, Boston, MA, USA, October 2-4, 2020, Proceedings / / edited by Frederica Darema, Erik Blasch, Sai Ravela, Alex Aved
Dynamic Data Driven Applications Systems [[electronic resource] ] : Third International Conference, DDDAS 2020, Boston, MA, USA, October 2-4, 2020, Proceedings / / edited by Frederica Darema, Erik Blasch, Sai Ravela, Alex Aved
Edizione [1st ed. 2020.]
Pubbl/distr/stampa Cham : , : Springer International Publishing : , : Imprint : Springer, , 2020
Descrizione fisica 1 online resource (XIII, 360 p. 134 illus., 115 illus. in color.)
Disciplina 004.6
Collana Theoretical Computer Science and General Issues
Soggetto topico Computers, Special purpose
Database management
Artificial intelligence
Computers
Computer networks
Computer systems
Special Purpose and Application-Based Systems
Database Management
Artificial Intelligence
Computing Milieux
Computer Communication Networks
Computer System Implementation
ISBN 3-030-61725-4
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Digital Twins -- Environment Cognizant Adaptive-Planning Systems -- Energy Systems -- Materials Systems -- Physics-based Systems Analysis -- Imaging Methods and Systems -- Learning Systems.
Record Nr. UNISA-996418208403316
Cham : , : Springer International Publishing : , : Imprint : Springer, , 2020
Materiale a stampa
Lo trovi qui: Univ. di Salerno
Opac: Controlla la disponibilità qui
Dynamic Data Driven Applications Systems : Third International Conference, DDDAS 2020, Boston, MA, USA, October 2-4, 2020, Proceedings / / edited by Frederica Darema, Erik Blasch, Sai Ravela, Alex Aved
Dynamic Data Driven Applications Systems : Third International Conference, DDDAS 2020, Boston, MA, USA, October 2-4, 2020, Proceedings / / edited by Frederica Darema, Erik Blasch, Sai Ravela, Alex Aved
Edizione [1st ed. 2020.]
Pubbl/distr/stampa Cham : , : Springer International Publishing : , : Imprint : Springer, , 2020
Descrizione fisica 1 online resource (XIII, 360 p. 134 illus., 115 illus. in color.)
Disciplina 004.6
Collana Theoretical Computer Science and General Issues
Soggetto topico Computers, Special purpose
Database management
Artificial intelligence
Computers
Computer networks
Computer systems
Special Purpose and Application-Based Systems
Database Management
Artificial Intelligence
Computing Milieux
Computer Communication Networks
Computer System Implementation
ISBN 3-030-61725-4
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Digital Twins -- Environment Cognizant Adaptive-Planning Systems -- Energy Systems -- Materials Systems -- Physics-based Systems Analysis -- Imaging Methods and Systems -- Learning Systems.
Record Nr. UNINA-9910427676003321
Cham : , : Springer International Publishing : , : Imprint : Springer, , 2020
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui