Fresh Water Pollution Dynamics and Remediation / / edited by Humaira Qadri, Rouf Ahmad Bhat, Mohammad Aneesul Mehmood, Gowhar Hamid Dar |
Edizione | [1st ed. 2020.] |
Pubbl/distr/stampa | Singapore : , : Springer Singapore : , : Imprint : Springer, , 2020 |
Descrizione fisica | 1 online resource (345 pages) |
Disciplina | 628.168 |
Soggetto topico |
Water - Pollution
Marine sciences Fresh water Environmental engineering Biotechnology Water quality Environmental health Aquatic ecology Waste Water Technology / Water Pollution Control / Water Management / Aquatic Pollution Marine & Freshwater Sciences Environmental Engineering/Biotechnology Water Quality/Water Pollution Water and Health Freshwater & Marine Ecology |
ISBN | 981-13-8277-8 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | The Concerns for Global Sustainability of Freshwater Ecosystems -- Freshwater Pollution: Effects on Aquatic Life and Human Health -- Freshwater contamination: sources and hazards to aquatic biota -- Correlation Between Pollution Trends of Freshwater Bodies and Bacterial Disease of Fish Fauna -- Impact of Pollution on Quality of Freshwater Ecosystems -- Heavy metal intrusion and accumulation in aquatic ecosystems -- Impact of climate change on freshwater ecosystem and its sustainable management -- Role of biotools in restoration of freshwater ecosystems Bioremediation -- A Sustainable and Emerging Tool for Restoration of Polluted Aquatic Ecosystems -- Biosorption as Environmentally Friendly Technique for Heavy Metal Removal from Wastewater -- Biotechnological interventions as an aquatic clean up tool -- Analysis of hydrology, sediment retention, biogenic-calcification and -scavenging as self-remediative lacustrine functions -- Remediation of pesticides through microbial and phytoremediation techniques -- Trends in Phyto-management of Aquatic Ecosystems and Evaluation of Factors Affecting Removal of Inorganic Pollutants from Water Bodies -- Urban Pond Ecosystems: Preservation and Management Through Phytoremediation -- Aquatic Pollution Stress and Role of Biofilms as Environment Cleanup Technology -- Wonders of Nanotechnology for Remediation of Polluted Aquatic Environs. |
Record Nr. | UNINA-9910366631103321 |
Singapore : , : Springer Singapore : , : Imprint : Springer, , 2020 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Microbiomes for the Management of Agricultural Sustainability / / Gowhar Hamid Dar, Rouf Ahmad Bhat, and Mohammad Aneesul Mehmood, editors |
Edizione | [First edition.] |
Pubbl/distr/stampa | Cham, Switzerland : , : Springer, , [2023] |
Descrizione fisica | 1 online resource (330 pages) |
Disciplina | 630.279 |
Soggetto topico | Agricultural microbiology |
ISBN | 3-031-32967-8 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | Chapter 1. Integrated Approaches to Agri-Nanotechnology: Applications, Challenges and Future Perspectives -- Chapter 2. Microbiota in sustainable degradation of organic waste and its utilization in agricultural industry -- Chapter 3. Microbial degradation of toxic Agri wastes -- Chapter 4. Introduction of Biofertilizers in Agriculture with Emphasis on Nitrogen Fixers and Phosphate Solubilizers -- Chapter 5. Biofertilizers and biopesticides: approaches towards sustainable development -- Chapter 6. Credibility of biofertilizers towards restoration of fertility phenomenon in degraded soil environs -- Chapter 7. Macrophytes as biofertilizer for Agriculture: Concept and Applications -- Chapter 8. Potential role of biofertilizers in fruit crops -- Chapter 9. Microbial Biofertilizers: An Approach to Sustainable Agriculture -- Chapter 10. Actinomycetes as biofertilizers for Sustainable agriculture -- Chapter 11. Innovations in Biotechnology: Boon for Agriculture and Soil fertility -- Chapter 12. Microbiomes in Climate Smart Agriculture and sustainability -- Chapter 13. Genetic engineering towards improvement of phosphorus agricultural utilization -- Chapter 14. Pseudomonas as backbone for environmental health -- Chapter 15. Cyanobacteria as sustainable microbe for agricultural industries -- Chapter 16. Functional Diversity of Endophytic Microbiota in Crop Management of Cucumis sativus L -- Chapter 17. NANOSCIENCE IN AGRICULTURAL STEADINESS -- Chapter 18. Carbon and Silver Nanoparticles for Applications in Agriculture. |
Record Nr. | UNINA-9910735790503321 |
Cham, Switzerland : , : Springer, , [2023] | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Microbiota and biofertilizers . Volume 2 Ecofriendly tools for reclamation of degraded soil environs / / Gowhar Hamid Dar [and three others], editors |
Pubbl/distr/stampa | Cham, Switzerland : , : Springer, , [2021] |
Descrizione fisica | 1 online resource (xxvii, 350 pages) : illustrations |
Disciplina | 581.5 |
Soggetto topico |
Plant ecology
Biofertilizers Soil remediation Adobs Ecologia vegetal Microbiologia dels sòls |
Soggetto genere / forma | Llibres electrònics |
ISBN | 3-030-61010-1 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Intro -- Foreword -- Preface -- Acknowledgements -- About the Book -- Contents -- Contributors -- About the Editors -- Chapter 1: Chemical Fertilizers and Their Impact on Soil Health -- 1.1 Introduction -- 1.2 Types of Chemical Fertilizers -- 1.3 Nitrogenous Fertilizer -- 1.3.1 Characteristics -- 1.4 Phosphorus Fertilizer -- 1.4.1 Characteristics -- 1.5 Potassium Fertilizer -- 1.5.1 Characteristics of Potassium Fertilizer -- 1.6 Advantages of Chemical Fertilizer -- 1.7 Drawbacks of Chemical Fertilizer -- 1.8 Important Nutrients in Fertilizers -- 1.9 Primary Nutrients -- 1.10 Secondary Nutrients -- 1.11 Micronutrients -- 1.12 Soil Health Concept -- 1.13 Positive Effects of Fertilizers -- 1.14 Impacts of Chemical Fertilizers on Soil Health -- 1.14.1 Soil Quality -- 1.14.2 Physicochemical Properties of Soil -- 1.14.3 Soil Enzyme Activity -- 1.14.4 Soil Compaction -- 1.14.5 Soil Acidification -- 1.14.6 Effect on Soil Biota -- 1.15 Soil Organic Matter (SOM) -- 1.16 Soil Salinity -- 1.17 Effect on Plants -- 1.18 Conclusion -- References -- Chapter 2: Microbial Bioremediation of Pesticides/Herbicides in Soil -- 2.1 Introduction -- 2.2 Merits of Pesticide Use -- 2.3 Risks Associated with Pesticide Use -- 2.4 Microbial Bioremediation -- 2.5 Factors Affecting Microorganism Bioremediation of Pesticide -- 2.6 Conclusion -- References -- Chapter 3: Pollution Cleaning Up Techniques -- 3.1 Introduction -- 3.2 Agricultural Pollution -- 3.3 Bioremediation Via Microbes -- 3.4 Microbial Processes Concerned with Bioremediation -- 3.4.1 Metal Microbe Mechanism of Interaction -- 3.5 Bioremediation Strategies -- 3.6 Phytoremediation -- 3.7 Phytoextraction -- 3.8 Phytostabilization -- 3.9 Rhizofiltration -- 3.10 Phytovolatilization -- 3.11 Aquatic Plant Species Studied for Phytoremediation -- 3.12 Pesticide Degradation by Bacteria -- 3.12.1 Role of Fungi.
3.12.2 Role of Enzymes -- 3.13 Conclusion -- References -- Chapter 4: Role of Mushrooms in the Bioremediation of Soil -- 4.1 Introduction -- 4.2 Mushroom as a Significant Tool for Mycoremediation -- 4.3 Remediation Through Mushrooms -- 4.3.1 Biodegradation -- 4.3.2 Bioconversion -- 4.3.3 Biosorption -- 4.4 White-Rot Fungi Degradation System -- 4.5 Mycoremediation of Solid Wastes -- 4.6 Xenobiotic Organic Compounds (XOCs) and Mycoremediation -- 4.6.1 Petroleum Hydrocarbons -- 4.6.2 Polycyclic Aromatic Hydrocarbons (PAHs) -- 4.6.3 Halogenated Organic Compounds -- 4.6.4 Synthetic Dyes -- 4.6.5 Synthetic Pesticides -- 4.6.6 Heavy Metals -- 4.7 Role of Mycorrhizae in Remediation of Soil -- 4.8 Disadvantages of Mycoremediation -- 4.9 Conclusion and Future Aspects -- References -- Chapter 5: Microbial Degradation of Organic Constituents for Sustainable Development -- 5.1 Introduction -- 5.2 Some Persistent Organic Pollutants (POPs) -- 5.3 Role of Microbes in the Degradation of Organic Substances -- 5.4 Microbial Degradation of Persistent Organic Pollutants -- 5.5 Microbial Degradation of Pesticides -- 5.6 Bacterial Degradations of Azo Dyes -- 5.7 Bioremediation of Heavy Metals -- 5.7.1 Biosorption -- 5.7.2 Bioleaching -- 5.7.3 Bioaccumulation -- 5.8 Conclusion -- References -- Chapter 6: Traditional Farming Practices and Its Consequences -- 6.1 Introduction -- 6.2 Background -- 6.3 Traditional Farming Practices -- 6.3.1 Agroforestry -- 6.3.2 Intercropping -- 6.3.3 Crop Rotation -- 6.3.4 Cover Cropping -- 6.3.5 Composting -- 6.3.6 Integrated Livestock Farming -- 6.3.7 Shifting Cultivation -- 6.4 Summary -- References -- Chapter 7: Soil Organic Matter and Its Impact on Soil Properties and Nutrient Status -- 7.1 Introduction -- 7.2 Effect of Soil Organic Matter on Soil Physical Properties -- 7.2.1 Soil Structure and Aggregate Stability -- 7.2.2 Soil Compaction. 7.2.3 Soil Porosity -- 7.2.4 Soil Color -- 7.2.5 Water-Holding Capacity -- 7.2.6 Soil Thermal Properties -- 7.2.7 Soil Infiltration and Percolation -- 7.3 Soil Chemical Properties -- 7.3.1 Buffering Capacity and Soil pH -- 7.3.2 Cation Exchange Capacity -- 7.3.3 Adsorption and Complexation -- 7.4 Soil Biological Properties -- 7.4.1 Soil Organic Matter as a Driver of Biological Activity -- 7.4.2 Soil Organic Matter and Soil Microbial Population -- 7.4.3 Soil Enzyme Activity and Soil Organic Matter -- 7.4.4 Soil Organic Matter as Important Nutrient Source -- 7.5 Conclusion -- References -- Chapter 8: Sustainable Agricultural Practices -- 8.1 Introduction -- 8.2 Current Status -- 8.2.1 Prerequisite of Organic Farming -- 8.2.2 Sources of Plant Nutrients -- 8.3 Practices in Organic Farming -- 8.3.1 Composting -- 8.3.2 Vermicomposting -- 8.4 Biofertilizers -- 8.4.1 Rhizobium Inoculants -- 8.4.2 Phosphate Solubilizing Microorganisms -- 8.4.3 Mycorrhiza -- 8.5 Mulching, Green Manuring, and Cover Cropping -- 8.6 Crop Rotation -- 8.7 Multicropping -- 8.8 Intercropping -- 8.9 Effective Microorganisms -- 8.10 Biopesticides -- 8.11 Use of Agro-Industry Remains -- 8.11.1 Oil Cakes as Organic Manure -- 8.12 Naturally Occurring Mineral Amendments -- 8.13 Permanent Grass -- 8.14 Nutrient Management and Fruit Quality -- 8.15 Role of Soil Organic Matter -- 8.16 Organic Matter as Soil Structure Builder and Storehouse of Nutrients -- 8.17 Role of Organic Nutrient Sources in Enhancing Nutrient-Use Efficiency -- 8.18 Conclusion -- References -- Chapter 9: Values of Composting -- 9.1 Introduction -- 9.2 Historical Background and Perspectives -- 9.3 Types of Compost -- 9.3.1 Aerated Static Pile Composting -- 9.3.2 Windrow Composting -- 9.3.3 Vermicomposting -- 9.3.4 In-Vessel Composting -- 9.4 Compost: A Viable Tool for Sustainable Agriculture. 9.5 Compost Application in Peri-urban Areas -- 9.6 Compost Versus Environmental and Soil Pollution -- 9.7 Conclusion -- References -- Chapter 10: Introduction to Microbiota and Biofertilizers -- 10.1 Introduction -- 10.2 Types of Biofertilizers -- 10.2.1 Nitrogen-Fixing Biofertilizer (NFB) -- 10.2.1.1 Free-Living -- 10.2.1.2 Symbiotic Associations -- 10.2.1.3 Associative Symbiotic (Without Endophytic Symbioses) -- 10.3 Phosphorus Biofertilizers -- 10.3.1 Phosphorus-Solubilizing Biofertilizers (PSB) -- 10.3.1.1 The Phosphorus-Solubilizing Bacteria (PSB) -- 10.3.1.2 The Phosphorus-Solubilizing Fungi (PSF) -- 10.4 Phosphate-Mobilizing Biofertilizers (PMB) -- 10.5 Mycorrhizal Biofertilizers -- 10.5.1 Arbuscular Mycorrhizal (AM) -- 10.5.2 Ectomycorrhiza -- 10.5.3 Biofertilizers for Micronutrients -- 10.5.3.1 Zinc Solubilizers -- 10.5.3.2 Silicate Solubilizers -- 10.5.3.3 Plant Growth-Promoting Biofertilizer (PGPB) -- 10.6 Microbiota Used in Biofertilizers -- 10.6.1 Bacteria -- 10.6.2 Actinomycetes -- 10.6.3 Fungi -- 10.6.4 Algae -- 10.6.5 Protozoa -- 10.6.6 Viruses -- 10.6.7 Nematodes -- 10.7 Functions of Plant Microbiota as Biofertilizers -- 10.8 Factors Affecting Plant Microbiota -- 10.9 Mechanism of Action of Various Biofertilizers -- 10.10 Types of Biofertilizer Formulation -- 10.10.1 Peat Formulations -- 10.10.2 Liquid Formulations -- 10.10.3 Granules -- 10.10.4 Lyophilized Powders -- 10.11 Potential Significance of Beneficial Microbiome in Sustainable Agriculture -- 10.12 Important Uses of Biofertilizers -- 10.12.1 Biofertilizer Boosts Up Photosynthetic Activity -- 10.12.2 PGPR Reduces Contamination of Soil with Pesticides in a Sustainable Way -- 10.12.3 Variation in the PGPR Microbial Population Varies the Type of Amino Acid Secretion in the Plant -- 10.12.4 Role of Biofertilizers in Remediation of Heavy Metal Toxicity. 10.12.5 Microbial Biofertilizers Exert a Significant Nematicidal Activity -- 10.12.6 Effect of Biofertilizers on Ecosystem -- 10.12.7 Effect of Biofertilizer in Soil Reclamation of Degraded Land Ecosystem -- 10.13 Benefits and Limitations of Biofertilizers -- 10.13.1 Benefits of Biological Fertilizers -- 10.13.2 Limitations of Biofertilizers -- 10.14 Future Perspectives of Biofertilizers -- 10.15 Conclusion -- References -- Chapter 11: Fungi and Their Potential as Biofertilizers -- 11.1 Introduction -- 11.2 Role of Microbial Technology in Sustainable Agriculture -- 11.3 Sustainable Production Through Biotechnological Tools -- 11.4 Fungi and Sustainable Agriculture -- 11.5 Ectomycorrhiza as Potential Biofertilizers -- 11.6 Potential of Mycorrhiza as Biofertilizer -- 11.7 Some Other Potential Biological Biofertilizers -- 11.8 Future of Fungal Biofertilizers -- 11.9 Future Perspectives -- 11.10 Conclusion -- References -- Chapter 12: Bacillus thuringiensis as a Biofertilizer and Plant Growth Promoter -- 12.1 Introduction -- 12.2 Bacillus thuringiensis -- 12.3 Phosphorus Availability in Soil -- 12.4 Phosphorus-Solubilizing Mechanisms -- 12.5 Biological Fertilizer -- 12.6 Plant Growth Promoter -- 12.7 Environmental Impact -- 12.8 Conclusions -- References -- Chapter 13: Cyanobacteria as Sustainable Microbiome for Agricultural Industries -- 13.1 Introduction -- 13.2 Evolutionary History -- 13.3 Cyanobacteria Under Extreme Conditions -- 13.4 Cyanobacteria as Potential Biofertilizers -- 13.4.1 Merits of Cyanobacterial Fertilizers -- 13.4.2 Demerits of Chemical Fertilizers -- 13.5 Cyanobacteria: As Biocontrol Agents -- 13.6 Cyanobacteria: As Plant Growth-Promoting Organisms -- 13.6.1 Auxin (IAA/Indole-3-Acetic Acid) -- 13.6.2 Gibberellin -- 13.6.3 Cytokinin -- 13.6.4 ABA (Abscisic Acid) -- 13.7 Sustainable Agriculture and Microbiome. 13.8 Cyanobacteria: A Sustainable Tool for Sustainable Agriculture. |
Record Nr. | UNINA-9910483515203321 |
Cham, Switzerland : , : Springer, , [2021] | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Nanobiostimulants : Emerging Strategies for Agricultural Sustainability / / edited by Vandana Singh, Rouf Ahmad Bhat, Gowhar Hamid Dar |
Autore | Singh Vandana |
Edizione | [1st ed. 2024.] |
Pubbl/distr/stampa | Cham : , : Springer Nature Switzerland : , : Imprint : Springer, , 2024 |
Descrizione fisica | 1 online resource (513 pages) |
Disciplina |
628
660.6 |
Altri autori (Persone) |
BhatRouf Ahmad
DarGowhar Hamid |
Soggetto topico |
Environmental engineering
Biotechnology Bioremediation Agriculture Nanobiotechnology Environmental Engineering/Biotechnology |
ISBN |
9783031681387
303168138X |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | Chapter 1: Introduction to Nanobiostimulants in Sustainable Agriculture -- Chapter 2: Nanofertilizers: A new frontier in agriculture -- Chapter 3: Green Synthesis of Nanobiostimulants and their applications -- Chapter 4: Valorisation of biomass to bio stimulants -- Chapter 5: Nanobiostimulants and Plant-Microbe Interactions -- Chapter 6: Nanobiostimulants for Enhancing Plant Growth and Yield -- Chapter 7: Nanobiostimulants: Precision tools for harnessing soil microbes and elevating agricultural productivity -- Chapter 8: Nanobiostimulants for Enhancing Plant Stress Tolerance -- Chapter 9: Harnessing Nano Bio-Stimulants for Sustainable Agriculture: Unraveling Plant-Microbe Synergies -- Chapter 10: Nanobiochar - A Nanostimulant for Enhancing Soil Quality and Sustainability -- Chapter 11: Nanobiostimulants : the nanoscopic bioeffecttors in Seed germination and Plant Establishment -- Chapter 12: Nanobiostimulants and Plant Secondary Metabolites -- Chapter 13: Nanobiostimulants and Sustainable Crop Production -- Chapter 14: The Role of Nanobiostimulants in Modulating Plant-Microbe Symbioses for Enhanced Crop Productivity -- Chapter 15: Nanobiostimulants and Climate Change Adaptation in Agriculture -- Chapter 16: Nanobiostimulants and Precision Agriculture: A Data-Driven Approach to Farming and Market Dynamics -- Chapter 17: Commercialization and Market Potential of Nanobiostimulants -- Chapter 18: Environmental Impacts of Nanobiostimulants -- Chapter 19: The world of nanobiostimulants impacting the environment -- Chapter 20: Nano-biostimulants For Improving Plant Roots Regulations and Nutrient Uptake -- Chapter 21: Ecological Perspectives on Nano-Biostimulant Applications in Agriculture. |
Record Nr. | UNINA-9910906301303321 |
Singh Vandana | ||
Cham : , : Springer Nature Switzerland : , : Imprint : Springer, , 2024 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Zero Waste Management Technologies / / edited by Rouf Ahmad Bhat, Gowhar Hamid Dar, Younis Ahmad Hajam |
Edizione | [1st ed. 2024.] |
Pubbl/distr/stampa | Cham : , : Springer Nature Switzerland : , : Imprint : Springer, , 2024 |
Descrizione fisica | 1 online resource (0 pages) |
Disciplina | 363.728 |
Soggetto topico |
Refuse and refuse disposal
Sustainability Economic geography Environment Waste Management/Waste Technology Economic Geography Environmental Sciences |
ISBN | 9783031572753 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | A comprehensive review on the development of zero waste management -- Crop residue management practices for sustaining soil health -- Biostimulation of microbes for enhanced oil removal from petroleum hydrocarbon contaminated soils: A zero waste remediation approach. |
Record Nr. | UNINA-9910869180103321 |
Cham : , : Springer Nature Switzerland : , : Imprint : Springer, , 2024 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|