top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Coordinated Operation and Planning of Modern Heat and Electricity Incorporated Networks
Coordinated Operation and Planning of Modern Heat and Electricity Incorporated Networks
Autore Daneshvar Mohammadreza
Pubbl/distr/stampa Newark : , : John Wiley & Sons, Incorporated, , 2022
Descrizione fisica 1 online resource (547 pages)
Altri autori (Persone) Mohammadi-IvatlooBehnam
ZareKazem
Collana IEEE Press Series on Power and Energy Systems Ser.
ISBN 1-119-86216-7
1-119-86213-2
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Cover -- Title Page -- Copyright Page -- Contents -- Editor Biographies -- List of Contributors -- Preface -- Chapter 1 Overview of Modern Energy Networks -- 1.1 Introduction -- 1.2 Reliability and Resilience of Modern Energy Grids -- 1.3 Renewable Energy Availability in Modern Energy Grids -- 1.4 Modern Multi-Carrier Energy Grids -- 1.5 Challenges and Opportunities of Modern Energy Grids -- 1.6 Summary -- References -- Chapter 2 An Overview of the Transition from One-Dimensional Energy Networks to Multi-Carrier Energy Grids -- Abbreviations -- 2.1 Introduction -- 2.2 Traditional Energy Systems -- 2.2.1 Electricity Grid -- 2.2.2 Gas Grid -- 2.2.3 Heating and Cooling Grid -- 2.3 Background of Multi-Carrier Energy Systems -- 2.3.1 Distributed Energy Resources Background -- 2.3.2 Cogeneration and Trigeneration Background -- 2.3.3 Quad Generation -- 2.4 The Definition of Multi-Carrier Energy Grids -- 2.5 Benefits of Multi-Carrier Energy Grids -- 2.6 Challenges of Moving Toward Multi-Carrier Energy Grids -- 2.7 Conclusions -- References -- Chapter 3 Overview of Modern Multi-Dimension Energy Networks -- Nomenclature -- Acronyms -- 3.1 Introduction -- 3.2 Multi-Dimension Energy Networks -- 3.3 Benefits of MDENs -- 3.3.1 Enhancing System Efficiency -- 3.3.2 Decarbonization -- 3.3.3 Reducing System Operation Cost -- 3.3.4 Improving System Flexibility and Reliability -- 3.4 Moving Toward Modern Multi-Dimension Energy Networks -- 3.4.1 Technology Advancements -- 3.4.2 Policy-Regulatory-Societal Framework -- 3.5 Coordinated Operation of Modern MDENs -- 3.5.1 Technologies -- 3.5.1.1 Enhanced Optimization Tools and Methods -- 3.5.1.2 Improved Forecasting Tools -- 3.5.2 Markets -- 3.5.2.1 Real-time Market Mechanisms -- 3.5.2.2 Peer-to-Peer Market Mechanisms -- 3.6 Coordinated Planning of Modern MDENs.
3.7 Future Plans for Increasing RERs and MDENs -- 3.8 Challenges -- 3.9 Summary -- References -- Chapter 4 Modern Smart Multi-Dimensional Infrastructure Energy Systems - State of the Arts -- Abbreviations -- 4.1 Introduction -- 4.2 Energy Networks -- 4.3 Infrastructure of Modern Multi-Dimensional Energy -- 4.4 Modeling Review -- 4.5 Integrated Energy Management System -- 4.6 Energy Conversion -- 4.7 Economic and Environmental Impact -- 4.8 Future Energy Systems -- 4.9 Conclusion -- References -- Chapter 5 Overview of the Optimal Operation of Heat and Electricity Incorporated Networks -- Abbreviations -- 5.1 Introduction -- 5.2 Integration of Electrical and Heat Energy Systems: The EH Solution -- 5.3 Energy Carriers and Elements of EH -- 5.3.1 Combined Heat and Power Technology -- 5.3.2 Power to Gas Technology -- 5.3.3 Compressed Air Energy Storage Technology -- 5.3.4 Water Desalination Unit -- 5.3.5 Plug-in Hybrid Electric Vehicles -- 5.4 Advantages of the EH System -- 5.4.1 Reliability Improvement -- 5.4.2 Flexibility Improvement -- 5.4.3 Operation Cost Reduction -- 5.4.4 Emissions Mitigation -- 5.5 Applications of the EH System -- 5.5.1 Residential Buildings -- 5.5.2 Commercial Buildings -- 5.5.3 Industrial Factories -- 5.5.4 Agricultural Sector -- 5.6 Challenges and Opportunities -- 5.6.1 Technical Point of View -- 5.6.2 Economic Point of View -- 5.6.3 Environment Point of View -- 5.6.4 Social Point of View -- 5.7 The Role of DSM Programs in the EH System -- 5.7.1 Demand Response Programs -- 5.7.2 Energy Efficiency Programs -- 5.8 Management Methods of the EH System -- 5.9 Conclusion -- References -- Chapter 6 Modern Heat and Electricity Incorporated Networks Targeted by Coordinated Cyberattacks for Congestion and Cascading Outages -- Abbreviations -- 6.1 Introduction -- 6.1.1 Scope of the Chapter.
6.1.2 Literature Review -- 6.1.3 Research Gap and Contributions of This Chapter -- 6.1.4 Organization of the Chapter -- 6.2 Proposed Framework -- 6.2.1 Illustration of the Proposed Framework -- 6.2.2 Assumptions of the Attack Framework -- 6.3 Problem Formulation -- 6.3.1 Objective Functions of the Attack Framework -- 6.3.2 Technical Constraints -- 6.3.2.1 Constraints Related to Bypassing DCSE BDD and ACSE BDD -- 6.3.2.2 Constraints Related to Thermal Units and CHP Units -- 6.3.2.3 Constraints Related to Wind Turbines -- 6.3.2.4 Constraints Related to PV Modules -- 6.3.2.5 Power and Heat Balance Constraints -- 6.3.2.6 Rest of System& -- rsquo -- s Constraints -- 6.4 Case Study and Simulation Results -- 6.4.1 Utilized Solver -- 6.4.2 Case Study -- 6.4.3 Investigated Scenarios of Cyberattacks -- 6.4.4 Numerical Results and Analysis -- 6.4.4.1 Elaboration of Results Associated with Scenario I -- 6.4.4.2 Elaboration of Results Associated with Scenario II -- 6.4.4.3 Elaboration of Results Associated with Scenario III -- 6.5 Conclusions and Future Work -- References -- Chapter 7 Cooperative Unmanned Aerial Vehicles for Monitoring and Maintenance of Heat and Electricity Incorporated Networks: A Learning-based Approach -- Abbreviations -- 7.1 Introduction -- 7.2 Application of Machine Learning in Power and Energy Networks -- 7.3 Unmanned Aerial Vehicle Applications in Energy and Electricity Incorporated Networks -- 7.4 Cooperative UAVs for Monitoring and Maintenance of Heat and Electricity Incorporated Networks: A Learning-based Approach -- 7.4.1 Network Topology -- 7.4.2 Solar Power Harvesting Model -- 7.4.3 SUAV´s Energy Outage -- 7.4.4 Mission Success Metric -- 7.4.5 Learning Strategy -- 7.4.6 Convergence Analysis -- 7.5 Simulation Results -- 7.6 Conclusions -- References.
Chapter 8 Coordinated Operation and Planning of the Modern Heat and Electricity Incorporated Networks -- Nomenclature -- Abbreviation -- Parameters -- 8.1 Introduction -- 8.2 Literature Review -- 8.3 Optimal Operation and Planning -- 8.3.1 Optimization in Incorporated Energy Networks -- 8.3.2 Stochastic Modelling -- 8.3.3 Objective Function -- 8.4 Components and Constraints -- 8.4.1 Combined Heat and Power by Waste to Energy -- 8.4.2 Photovoltaic -- 8.4.3 Wind Turbine -- 8.4.4 Ground Source Heat Pump -- 8.4.5 Boiler -- 8.4.6 Heat Storage -- 8.4.7 Heat and Electricity Demand -- 8.5 Incorporated Heat and Electricity Structure -- 8.6 Case Study -- 8.7 Demand Profile -- 8.8 Economic and Environmental Features -- 8.9 Result and Discussion -- 8.10 Conclusion -- References -- Chapter 9 Optimal Coordinated Operation of Heat and Electricity Incorporated Networks -- Nomenclature -- A. Acronyms -- B. Indices -- C. Parameters -- D. Variables -- 9.1 Introduction -- 9.2 Heat and Electricity Incorporated Networks Components and Their Modeling -- 9.2.1 Loads/Services -- 9.2.1.1 Electrical Loads -- 9.2.1.2 Thermal Loads -- 9.2.1.3 Thermal Comfort -- 9.2.2 Equipment -- 9.2.2.1 Resources -- 9.2.2.2 Storages -- 9.2.3 Buildings/Smart Homes -- 9.2.4 Heat and Electricity Incorporated Network Operator -- 9.2.5 Different Layers/Networks and Their Connection -- 9.3 Uncertainties -- 9.4 Optimal Operation of Heat and Electricity Incorporated Networks -- 9.4.1 Definition of Optimal Operation -- 9.4.2 Different Goals in Heat and Electricity Incorporated Networks Exploitation -- 9.4.3 Different Levels of Heat and Electricity Incorporated Networks Exploitation -- 9.4.4 Existing Potential of Heat and Electricity Incorporated Networks for Optimizing Their Operation -- 9.4.4.1 Internal Potential -- 9.4.4.2 External Potential.
9.5 Market/Incentives -- 9.5.1 Energy Markets -- 9.5.2 Ancillary Services Market -- 9.5.3 Tax/Incentives Impact on Heat and Electricity Incorporated Networks Operation -- 9.5.4 Offering Strategy -- 9.6 Main Achievements on Heat and Electricity Incorporated Networks Operation -- 9.7 Conclusions -- References -- Chapter 10 Optimal Energy Management of a Demand Response Integrated Combined-Heat-and-Electrical Microgrid -- Nomenclatur -- A. Acronyms -- B. Sets and Indexes -- C. Parameters -- D. Variables -- 10.1 Introduction -- 10.2 CHEM Modeling -- 10.2.1 CHEM Structure -- 10.2.2 Modeling for Heat Network -- 10.2.2.1 District Heating Network Background -- 10.2.2.2 Nodal Flow Balance -- 10.2.2.3 Calculation of Heat Energy -- 10.2.2.4 Mixing Equation for Temperature -- 10.2.2.5 Heat Dynamics and Loss -- 10.2.3 Indoor Temperature Control -- 10.2.4 Price-based Demand Response -- 10.3 Coordinated Optimization of CHEM -- 10.3.1 Objective Function -- 10.3.2 Operational Constraints -- 10.3.3 Solution Method -- 10.4 Case Studies -- 10.4.1 Simulation Test Setup -- 10.4.1.1 33-bus CHEM -- 10.4.1.2 69-bus CHEM -- 10.4.2 Discussions on Simulation Results -- 10.4.2.1 33-bus CHEM -- 10.4.2.2 69-bus CHEM -- 10.4.3 Conclusion -- References -- Chapter 11 Optimal Operation of Residential Heating Systems in Electricity Markets Leveraging Joint Power-Heat Flexibility -- 11.1 Why Joint Heat-Power Flexibility? -- 11.2 Literature Review -- 11.3 Intelligent Heating Systems -- 11.4 Flexibility Potentials of Heating Systems -- 11.5 Heat Controllers -- 11.6 Thermal Dynamics of Buildings -- 11.7 Economic Heat Controller in Dynamic Electricity Market -- 11.7.1 Objective Function of EMPC -- 11.7.2 Case Study of EMPC -- 11.8 Flexible Heat Controller in Uncertain Electricity Market -- 11.8.1 Objective Function of SEMPC -- 11.8.2 First Stage.
11.8.3 Second Stage.
Record Nr. UNINA-9910632500803321
Daneshvar Mohammadreza  
Newark : , : John Wiley & Sons, Incorporated, , 2022
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Interconnected Modern Multi-Energy Networks and Intelligent Transportation Systems : Towards a Green Economy and Sustainable Development
Interconnected Modern Multi-Energy Networks and Intelligent Transportation Systems : Towards a Green Economy and Sustainable Development
Autore Daneshvar Mohammadreza
Edizione [1st ed.]
Pubbl/distr/stampa Newark : , : John Wiley & Sons, Incorporated, , 2024
Descrizione fisica 1 online resource (475 pages)
Altri autori (Persone) Mohammadi-IvatlooBehnam
Anvari-MoghaddamAmjad
RazzaghiReza
Collana IEEE Press Series on Power and Energy Systems Series
ISBN 1-394-18878-1
1-394-18876-5
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Cover -- Title Page -- Copyright Page -- Contents -- List of Contributors -- About the Editors -- Preface -- Chapter 1 The Necessity for Modernizing the Coupled Structure of Intelligent Transportation Systems and Multi-Energy Networks -- 1.1 Introduction -- 1.2 Applications of Intelligent Transportation Systems -- 1.3 Coupled Structure of ITSs and Multi-Energy Networks -- 1.4 Summary -- References -- Chapter 2 Green Transportation Systems -- 2.1 Introduction -- 2.1.1 Motivation and Problem Description -- 2.1.2 Literature Review -- 2.1.3 Chapter Organization -- 2.2 History of Transportation -- 2.3 Transportation Expansion Issues -- 2.3.1 Urbanization's Growth -- 2.3.2 Traffic Growth -- 2.3.3 Environmental Issues -- 2.4 Definition of Green Transportation -- 2.5 Advantages of Green Transportation -- 2.6 International Agreements -- 2.7 Challenges to GT -- 2.7.1 Institutional Challenges -- 2.7.2 Regulatory Challenges and Barriers -- 2.7.3 Technology-related Barriers -- 2.7.4 Financial Barriers -- 2.7.5 General Admission -- 2.8 Green Transportation's Effects on Multi-Energy Networks -- 2.9 Implementation Strategies for the Green Transportation System -- 2.9.1 Actions Performed to Promote Green Transportation -- 2.10 New Technologies for Green Transportation -- 2.10.1 Energy Technology -- 2.10.2 Environmentally Friendly Technologies -- 2.10.2.1 Greener Tires -- 2.10.2.2 Reusing Energy -- 2.11 Intelligent Transportation System -- 2.11.1 Vehicle Communication in Intelligent Transportation -- 2.12 Conclusion -- References -- Chapter 3 Techno-Economic-Environmental Assessment of Green Transportation Systems -- 3.1 Introduction -- 3.2 Technologies for Green Transportation Systems -- 3.2.1 Eco-Friendly and Energy-Efficient Technologies -- 3.2.2 Intelligent System Technologies -- 3.2.3 Integrated Management Technologies -- 3.2.4 Distributed Ledger Technologies.
3.3 Economic Implications of Green Transportation Systems -- 3.3.1 Cost Saving -- 3.3.2 Job Creation -- 3.4 Environmental Implications of Green Transportation Systems -- 3.4.1 Lowering Emission of Pollutants -- 3.4.2 Improving Human Health Status -- 3.5 Conclusion -- References -- Chapter 4 Urban Integrated Sustainable Transportation Networks -- 4.1 Introduction -- 4.2 Necessity of Sustainable Transportation -- 4.2.1 Impact of Conventional Transportation on Climate Change -- 4.2.2 Impact of Transportation-related Emissions on Public Health -- 4.2.3 Role of Road Transportation in Carbon Emissions -- 4.2.4 Existing Global Energy Market -- 4.2.5 Potential Approaches for Mitigating Emissions -- 4.3 Challenges and Opportunities Associated with the Implementation of Sustainable Transportation -- 4.3.1 Growing Car Sector -- 4.3.2 Urban Growth -- 4.3.3 Transformation Cost -- 4.3.4 Planning Challenges -- 4.3.5 Safety Risks -- 4.3.6 Security Challenges -- 4.3.7 Social Benefits -- 4.3.8 Environmental Benefits -- 4.3.9 Economic Benefits -- 4.4 Modes of Sustainable Transportation -- 4.4.1 Walk -- 4.4.2 Bicycle -- 4.4.3 Electric Bike/Scooter -- 4.4.4 Carpooling -- 4.4.5 Electric Car -- 4.4.6 Public Transportation -- 4.5 Sustainable Transportation in Modern Urban Advancement -- 4.5.1 Importance of Sustainable Transport in Urban Growth -- 4.5.1.1 Urban Planning -- 4.5.1.2 Smart Cities -- 4.5.1.3 Economic Growth -- 4.5.1.4 Promoting Sustainable Transport -- 4.6 Infrastructure for Sustainable Transportation -- 4.6.1 Governance -- 4.6.2 Interaction with Electricity Infrastructure -- 4.6.2.1 Electric Buses and the Power Grid -- 4.6.2.2 Operational Strategies -- 4.6.2.3 Compensation for the Minimum Demand Reduction -- 4.6.2.4 Flexible Operation of E-mobility -- 4.6.3 Features of Integrated Sustainable Transportation Networks.
4.6.3.1 Transport Resilience and Sustainability -- 4.6.4 Transition to a Sustainable Transportation -- 4.7 Conclusion -- References -- Chapter 5 Multi-Energy Technologies in Green and Integrated Transportation Networks -- 5.1 Introduction -- 5.2 Definition of Green Transportation -- 5.3 Technological Development and Managerial Integration for Green Transportation -- 5.3.1 Energy-Efficient Technology -- 5.3.2 Eco-Friendly Technology -- 5.3.3 Intelligent Transportation System (ITS) -- 5.3.4 Integrating Systems: Efficiency by Design -- 5.3.5 Energy Re-using -- 5.3.6 Solar Impulse Technology -- 5.3.7 Integrated Management for Green Transportation -- 5.3.7.1 Infrastructure Development -- 5.3.7.2 Alternative Measures in Urban Transportation -- 5.4 Definition and Features of Integrated Multi-Energy System -- 5.4.1 Definition of Integrated Multi-Energy System -- 5.4.2 Major Characteristics of Integrated Multi-Energy System -- 5.4.3 Role and Effects of Multi-Energy Conversion Systems in Green and Integrated Transportation Networks -- 5.5 Electric Vehicle Integration with Renewable Energy Sources -- 5.5.1 Electric Vehicle Integration with Wind Energy -- 5.5.2 Electric Vehicle Integration with Solar Energy -- 5.6 Hybrid Fuel Cell/Battery Vehicle Systems -- 5.6.1 PEMFC-Based Fuel Cell Vehicle Systems -- 5.6.2 SOFC-Based Fuel Cell Vehicle Systems -- 5.6.3 Present Situation of Fuel Cell Vehicle Technology -- 5.6.4 Confronts of Fuel Cell Vehicle Technology -- 5.7 Barriers and Challenges -- 5.7.1 Societal Barriers and Challenges -- 5.7.2 Technological Barriers and Challenges -- 5.7.3 Financial Barriers and Challenges -- 5.8 Conclusion -- References -- Chapter 6 Flexible Operation of Power-To-X Energy Systems in Transportation Networks -- Table of Acronyms -- 6.1 Introduction -- 6.1.1 Problem Description and Motivation -- 6.1.2 State of the Art.
6.1.3 Contributions and Organization -- 6.2 Power to Hydrogen -- 6.3 Power to Methane -- 6.4 Power to Chemical (P2C) -- 6.4.1 Power to Diesel (P2D) -- 6.4.2 Power-to-Formic Acid (P2FA) -- 6.4.3 Power to Methanol (P2Me) -- 6.5 Power to Heat (P2H) -- 6.6 Power to Transport (P2T) -- 6.7 Power Demand Flexibility -- 6.8 Conclusion -- References -- Chapter 7 Integration of Electric Vehicles into Multi-energy Systems -- Abbreviations -- 7.1 Introduction -- 7.2 Multi-energy Systems Structure -- 7.2.1 General Aspects of MES Modeling -- 7.2.2 Energy Hub Concept -- 7.2.3 MES Modeling Process and Challenges -- 7.3 Integration of EVs in MES -- 7.3.1 Integration of EV with RES -- 7.3.1.1 Integration of EV with Wind Energy -- 7.3.1.2 Integration of EV with Solar Energy -- 7.3.2 Integration of EV with Power Grids -- 7.3.2.1 EV and Distribution Systems -- 7.3.2.2 EV and Microgrids -- 7.3.2.3 EVs and Homes/Buildings -- 7.3.2.4 EV and EH -- 7.3.2.5 EV and Virtual Power Plants -- 7.3.3 EV Charging/Discharging Strategies -- 7.3.3.1 Vehicle-to-Everything (V2X) -- 7.3.3.2 Smart Bidirectional Charging -- 7.4 Conclusion -- References -- Chapter 8 Self-Driving Vehicle Systems in Intelligent Transportation Networks -- 8.1 Introduction -- 8.2 Brief History -- 8.3 Literature Review -- 8.4 Advantages and Challenges -- 8.5 Sensing -- 8.6 Perception -- 8.6.1 Object Detection and Tracking -- 8.6.2 Simultaneous Localization and Mapping -- 8.7 Planning and Control -- 8.8 Conclusion -- Acknowledgment -- References -- Chapter 9 Energy Storage Technologies and Control Systems for Electric Vehicles -- Acronyms -- 9.1 Introduction -- 9.2 Fuel Cell -- 9.2.1 Types of Fuel Cells -- 9.2.1.1 Proton Exchange Membrane Fuel Cell -- 9.2.1.2 Phosphoric Acid Fuel Cell (PAFC) -- 9.2.1.3 Alkaline Fuel Cell -- 9.2.1.4 Molten Carbonate Fuel Cell -- 9.2.1.5 Solid Oxide Fuel Cell.
9.2.1.6 Direct Methanol Fuel Cell -- 9.3 Battery Technologies for Electric Vehicles -- 9.3.1 Lead-Acid Batteries -- 9.3.2 Nickel-Cadmium Battery (NiCd) -- 9.3.3 Nickel-Metal-Hydride (Ni-MH) -- 9.3.4 Lithium-ion (Li-ion) -- 9.3.4.1 Lithium Cobalt Oxide (LiCoO2, LCO) -- 9.3.4.2 Lithium Manganese Oxide (LiMn2O4, LMO/Spinel) -- 9.3.4.3 Lithium Iron Phosphate (LiFePO4, LFP) -- 9.4 Overview of Brushless Motor -- 9.4.1 Mathematical Modeling of BLDC Motor -- 9.4.1.1 Electric Model of BLDC -- 9.4.1.2 Mechanical Model of BLDC -- 9.5 BLDC Motor Control Strategy for Electric Vehicles -- 9.5.1 PI Controller -- 9.5.2 PID Controller -- 9.5.3 Fuzzy Logic Controller -- 9.5.3.1 Fuzzification -- 9.5.3.2 Fuzzy Inference -- 9.5.3.3 Defuzzification -- 9.6 Simulation Results -- 9.7 Environnemental Impact of EVs -- 9.8 EVs and Modern Technologies -- 9.9 Challenges and Perspectives of EVs -- 9.10 Conclusion -- Acknowledgments -- References -- Chapter 10 Electric Vehicle Path Towards Sustainable Transportation: A Comprehensive Structure -- Nomenclature -- 10.1 Introduction -- 10.2 Optimum Design of EVs -- 10.3 Characterization of EV Battery System -- 10.3.1 Thermal Management of Battery -- 10.3.2 Assessment of Battery System -- 10.4 Control System of EVs -- 10.5 Reliability Assessment of EV -- 10.6 Assessment of EV Charging Station -- 10.6.1 Location Assessment for EV Charging Station -- 10.6.2 Characterization of Charging Station -- 10.7 Worldwide Policy Framework for EV -- 10.8 Electric Vehicles on the Sustainability and Reliability of Transportation Network -- 10.9 Recent Trends and Future Challenges -- References -- Chapter 11 Electric Vehicle Charging Management in Parking Structures -- 11.1 Introduction -- 11.2 EV Charging Management Schemes -- 11.3 Fair Charging Management -- 11.3.1 Preliminaries on á-Fairness -- 11.3.2 Generic-Fair Energy Allocation Algorithm.
11.4 Delay-Fair Charging Management.
Record Nr. UNINA-9910830452503321
Daneshvar Mohammadreza  
Newark : , : John Wiley & Sons, Incorporated, , 2024
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Interconnected Modern Multi-Energy Networks and Intelligent Transportation Systems : Towards a Green Economy and Sustainable Development
Interconnected Modern Multi-Energy Networks and Intelligent Transportation Systems : Towards a Green Economy and Sustainable Development
Autore Daneshvar Mohammadreza
Edizione [1st ed.]
Pubbl/distr/stampa Newark : , : John Wiley & Sons, Incorporated, , 2024
Descrizione fisica 1 online resource (475 pages)
Altri autori (Persone) Mohammadi-IvatlooBehnam
Anvari-MoghaddamAmjad
RazzaghiReza
Collana IEEE Press Series on Power and Energy Systems Series
Soggetto topico Sustainable development
Renewable energy sources
ISBN 9781394188789
1394188781
9781394188765
1394188765
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Cover -- Title Page -- Copyright Page -- Contents -- List of Contributors -- About the Editors -- Preface -- Chapter 1 The Necessity for Modernizing the Coupled Structure of Intelligent Transportation Systems and Multi-Energy Networks -- 1.1 Introduction -- 1.2 Applications of Intelligent Transportation Systems -- 1.3 Coupled Structure of ITSs and Multi-Energy Networks -- 1.4 Summary -- References -- Chapter 2 Green Transportation Systems -- 2.1 Introduction -- 2.1.1 Motivation and Problem Description -- 2.1.2 Literature Review -- 2.1.3 Chapter Organization -- 2.2 History of Transportation -- 2.3 Transportation Expansion Issues -- 2.3.1 Urbanization's Growth -- 2.3.2 Traffic Growth -- 2.3.3 Environmental Issues -- 2.4 Definition of Green Transportation -- 2.5 Advantages of Green Transportation -- 2.6 International Agreements -- 2.7 Challenges to GT -- 2.7.1 Institutional Challenges -- 2.7.2 Regulatory Challenges and Barriers -- 2.7.3 Technology-related Barriers -- 2.7.4 Financial Barriers -- 2.7.5 General Admission -- 2.8 Green Transportation's Effects on Multi-Energy Networks -- 2.9 Implementation Strategies for the Green Transportation System -- 2.9.1 Actions Performed to Promote Green Transportation -- 2.10 New Technologies for Green Transportation -- 2.10.1 Energy Technology -- 2.10.2 Environmentally Friendly Technologies -- 2.10.2.1 Greener Tires -- 2.10.2.2 Reusing Energy -- 2.11 Intelligent Transportation System -- 2.11.1 Vehicle Communication in Intelligent Transportation -- 2.12 Conclusion -- References -- Chapter 3 Techno-Economic-Environmental Assessment of Green Transportation Systems -- 3.1 Introduction -- 3.2 Technologies for Green Transportation Systems -- 3.2.1 Eco-Friendly and Energy-Efficient Technologies -- 3.2.2 Intelligent System Technologies -- 3.2.3 Integrated Management Technologies -- 3.2.4 Distributed Ledger Technologies.
3.3 Economic Implications of Green Transportation Systems -- 3.3.1 Cost Saving -- 3.3.2 Job Creation -- 3.4 Environmental Implications of Green Transportation Systems -- 3.4.1 Lowering Emission of Pollutants -- 3.4.2 Improving Human Health Status -- 3.5 Conclusion -- References -- Chapter 4 Urban Integrated Sustainable Transportation Networks -- 4.1 Introduction -- 4.2 Necessity of Sustainable Transportation -- 4.2.1 Impact of Conventional Transportation on Climate Change -- 4.2.2 Impact of Transportation-related Emissions on Public Health -- 4.2.3 Role of Road Transportation in Carbon Emissions -- 4.2.4 Existing Global Energy Market -- 4.2.5 Potential Approaches for Mitigating Emissions -- 4.3 Challenges and Opportunities Associated with the Implementation of Sustainable Transportation -- 4.3.1 Growing Car Sector -- 4.3.2 Urban Growth -- 4.3.3 Transformation Cost -- 4.3.4 Planning Challenges -- 4.3.5 Safety Risks -- 4.3.6 Security Challenges -- 4.3.7 Social Benefits -- 4.3.8 Environmental Benefits -- 4.3.9 Economic Benefits -- 4.4 Modes of Sustainable Transportation -- 4.4.1 Walk -- 4.4.2 Bicycle -- 4.4.3 Electric Bike/Scooter -- 4.4.4 Carpooling -- 4.4.5 Electric Car -- 4.4.6 Public Transportation -- 4.5 Sustainable Transportation in Modern Urban Advancement -- 4.5.1 Importance of Sustainable Transport in Urban Growth -- 4.5.1.1 Urban Planning -- 4.5.1.2 Smart Cities -- 4.5.1.3 Economic Growth -- 4.5.1.4 Promoting Sustainable Transport -- 4.6 Infrastructure for Sustainable Transportation -- 4.6.1 Governance -- 4.6.2 Interaction with Electricity Infrastructure -- 4.6.2.1 Electric Buses and the Power Grid -- 4.6.2.2 Operational Strategies -- 4.6.2.3 Compensation for the Minimum Demand Reduction -- 4.6.2.4 Flexible Operation of E-mobility -- 4.6.3 Features of Integrated Sustainable Transportation Networks.
4.6.3.1 Transport Resilience and Sustainability -- 4.6.4 Transition to a Sustainable Transportation -- 4.7 Conclusion -- References -- Chapter 5 Multi-Energy Technologies in Green and Integrated Transportation Networks -- 5.1 Introduction -- 5.2 Definition of Green Transportation -- 5.3 Technological Development and Managerial Integration for Green Transportation -- 5.3.1 Energy-Efficient Technology -- 5.3.2 Eco-Friendly Technology -- 5.3.3 Intelligent Transportation System (ITS) -- 5.3.4 Integrating Systems: Efficiency by Design -- 5.3.5 Energy Re-using -- 5.3.6 Solar Impulse Technology -- 5.3.7 Integrated Management for Green Transportation -- 5.3.7.1 Infrastructure Development -- 5.3.7.2 Alternative Measures in Urban Transportation -- 5.4 Definition and Features of Integrated Multi-Energy System -- 5.4.1 Definition of Integrated Multi-Energy System -- 5.4.2 Major Characteristics of Integrated Multi-Energy System -- 5.4.3 Role and Effects of Multi-Energy Conversion Systems in Green and Integrated Transportation Networks -- 5.5 Electric Vehicle Integration with Renewable Energy Sources -- 5.5.1 Electric Vehicle Integration with Wind Energy -- 5.5.2 Electric Vehicle Integration with Solar Energy -- 5.6 Hybrid Fuel Cell/Battery Vehicle Systems -- 5.6.1 PEMFC-Based Fuel Cell Vehicle Systems -- 5.6.2 SOFC-Based Fuel Cell Vehicle Systems -- 5.6.3 Present Situation of Fuel Cell Vehicle Technology -- 5.6.4 Confronts of Fuel Cell Vehicle Technology -- 5.7 Barriers and Challenges -- 5.7.1 Societal Barriers and Challenges -- 5.7.2 Technological Barriers and Challenges -- 5.7.3 Financial Barriers and Challenges -- 5.8 Conclusion -- References -- Chapter 6 Flexible Operation of Power-To-X Energy Systems in Transportation Networks -- Table of Acronyms -- 6.1 Introduction -- 6.1.1 Problem Description and Motivation -- 6.1.2 State of the Art.
6.1.3 Contributions and Organization -- 6.2 Power to Hydrogen -- 6.3 Power to Methane -- 6.4 Power to Chemical (P2C) -- 6.4.1 Power to Diesel (P2D) -- 6.4.2 Power-to-Formic Acid (P2FA) -- 6.4.3 Power to Methanol (P2Me) -- 6.5 Power to Heat (P2H) -- 6.6 Power to Transport (P2T) -- 6.7 Power Demand Flexibility -- 6.8 Conclusion -- References -- Chapter 7 Integration of Electric Vehicles into Multi-energy Systems -- Abbreviations -- 7.1 Introduction -- 7.2 Multi-energy Systems Structure -- 7.2.1 General Aspects of MES Modeling -- 7.2.2 Energy Hub Concept -- 7.2.3 MES Modeling Process and Challenges -- 7.3 Integration of EVs in MES -- 7.3.1 Integration of EV with RES -- 7.3.1.1 Integration of EV with Wind Energy -- 7.3.1.2 Integration of EV with Solar Energy -- 7.3.2 Integration of EV with Power Grids -- 7.3.2.1 EV and Distribution Systems -- 7.3.2.2 EV and Microgrids -- 7.3.2.3 EVs and Homes/Buildings -- 7.3.2.4 EV and EH -- 7.3.2.5 EV and Virtual Power Plants -- 7.3.3 EV Charging/Discharging Strategies -- 7.3.3.1 Vehicle-to-Everything (V2X) -- 7.3.3.2 Smart Bidirectional Charging -- 7.4 Conclusion -- References -- Chapter 8 Self-Driving Vehicle Systems in Intelligent Transportation Networks -- 8.1 Introduction -- 8.2 Brief History -- 8.3 Literature Review -- 8.4 Advantages and Challenges -- 8.5 Sensing -- 8.6 Perception -- 8.6.1 Object Detection and Tracking -- 8.6.2 Simultaneous Localization and Mapping -- 8.7 Planning and Control -- 8.8 Conclusion -- Acknowledgment -- References -- Chapter 9 Energy Storage Technologies and Control Systems for Electric Vehicles -- Acronyms -- 9.1 Introduction -- 9.2 Fuel Cell -- 9.2.1 Types of Fuel Cells -- 9.2.1.1 Proton Exchange Membrane Fuel Cell -- 9.2.1.2 Phosphoric Acid Fuel Cell (PAFC) -- 9.2.1.3 Alkaline Fuel Cell -- 9.2.1.4 Molten Carbonate Fuel Cell -- 9.2.1.5 Solid Oxide Fuel Cell.
9.2.1.6 Direct Methanol Fuel Cell -- 9.3 Battery Technologies for Electric Vehicles -- 9.3.1 Lead-Acid Batteries -- 9.3.2 Nickel-Cadmium Battery (NiCd) -- 9.3.3 Nickel-Metal-Hydride (Ni-MH) -- 9.3.4 Lithium-ion (Li-ion) -- 9.3.4.1 Lithium Cobalt Oxide (LiCoO2, LCO) -- 9.3.4.2 Lithium Manganese Oxide (LiMn2O4, LMO/Spinel) -- 9.3.4.3 Lithium Iron Phosphate (LiFePO4, LFP) -- 9.4 Overview of Brushless Motor -- 9.4.1 Mathematical Modeling of BLDC Motor -- 9.4.1.1 Electric Model of BLDC -- 9.4.1.2 Mechanical Model of BLDC -- 9.5 BLDC Motor Control Strategy for Electric Vehicles -- 9.5.1 PI Controller -- 9.5.2 PID Controller -- 9.5.3 Fuzzy Logic Controller -- 9.5.3.1 Fuzzification -- 9.5.3.2 Fuzzy Inference -- 9.5.3.3 Defuzzification -- 9.6 Simulation Results -- 9.7 Environnemental Impact of EVs -- 9.8 EVs and Modern Technologies -- 9.9 Challenges and Perspectives of EVs -- 9.10 Conclusion -- Acknowledgments -- References -- Chapter 10 Electric Vehicle Path Towards Sustainable Transportation: A Comprehensive Structure -- Nomenclature -- 10.1 Introduction -- 10.2 Optimum Design of EVs -- 10.3 Characterization of EV Battery System -- 10.3.1 Thermal Management of Battery -- 10.3.2 Assessment of Battery System -- 10.4 Control System of EVs -- 10.5 Reliability Assessment of EV -- 10.6 Assessment of EV Charging Station -- 10.6.1 Location Assessment for EV Charging Station -- 10.6.2 Characterization of Charging Station -- 10.7 Worldwide Policy Framework for EV -- 10.8 Electric Vehicles on the Sustainability and Reliability of Transportation Network -- 10.9 Recent Trends and Future Challenges -- References -- Chapter 11 Electric Vehicle Charging Management in Parking Structures -- 11.1 Introduction -- 11.2 EV Charging Management Schemes -- 11.3 Fair Charging Management -- 11.3.1 Preliminaries on á-Fairness -- 11.3.2 Generic-Fair Energy Allocation Algorithm.
11.4 Delay-Fair Charging Management.
Record Nr. UNINA-9910877176703321
Daneshvar Mohammadreza  
Newark : , : John Wiley & Sons, Incorporated, , 2024
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui