Coordinated Operation and Planning of Modern Heat and Electricity Incorporated Networks |
Autore | Daneshvar Mohammadreza |
Pubbl/distr/stampa | Newark : , : John Wiley & Sons, Incorporated, , 2022 |
Descrizione fisica | 1 online resource (547 pages) |
Altri autori (Persone) |
Mohammadi-IvatlooBehnam
ZareKazem |
Collana | IEEE Press Series on Power and Energy Systems Ser. |
ISBN |
1-119-86216-7
1-119-86213-2 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Cover -- Title Page -- Copyright Page -- Contents -- Editor Biographies -- List of Contributors -- Preface -- Chapter 1 Overview of Modern Energy Networks -- 1.1 Introduction -- 1.2 Reliability and Resilience of Modern Energy Grids -- 1.3 Renewable Energy Availability in Modern Energy Grids -- 1.4 Modern Multi-Carrier Energy Grids -- 1.5 Challenges and Opportunities of Modern Energy Grids -- 1.6 Summary -- References -- Chapter 2 An Overview of the Transition from One-Dimensional Energy Networks to Multi-Carrier Energy Grids -- Abbreviations -- 2.1 Introduction -- 2.2 Traditional Energy Systems -- 2.2.1 Electricity Grid -- 2.2.2 Gas Grid -- 2.2.3 Heating and Cooling Grid -- 2.3 Background of Multi-Carrier Energy Systems -- 2.3.1 Distributed Energy Resources Background -- 2.3.2 Cogeneration and Trigeneration Background -- 2.3.3 Quad Generation -- 2.4 The Definition of Multi-Carrier Energy Grids -- 2.5 Benefits of Multi-Carrier Energy Grids -- 2.6 Challenges of Moving Toward Multi-Carrier Energy Grids -- 2.7 Conclusions -- References -- Chapter 3 Overview of Modern Multi-Dimension Energy Networks -- Nomenclature -- Acronyms -- 3.1 Introduction -- 3.2 Multi-Dimension Energy Networks -- 3.3 Benefits of MDENs -- 3.3.1 Enhancing System Efficiency -- 3.3.2 Decarbonization -- 3.3.3 Reducing System Operation Cost -- 3.3.4 Improving System Flexibility and Reliability -- 3.4 Moving Toward Modern Multi-Dimension Energy Networks -- 3.4.1 Technology Advancements -- 3.4.2 Policy-Regulatory-Societal Framework -- 3.5 Coordinated Operation of Modern MDENs -- 3.5.1 Technologies -- 3.5.1.1 Enhanced Optimization Tools and Methods -- 3.5.1.2 Improved Forecasting Tools -- 3.5.2 Markets -- 3.5.2.1 Real-time Market Mechanisms -- 3.5.2.2 Peer-to-Peer Market Mechanisms -- 3.6 Coordinated Planning of Modern MDENs.
3.7 Future Plans for Increasing RERs and MDENs -- 3.8 Challenges -- 3.9 Summary -- References -- Chapter 4 Modern Smart Multi-Dimensional Infrastructure Energy Systems - State of the Arts -- Abbreviations -- 4.1 Introduction -- 4.2 Energy Networks -- 4.3 Infrastructure of Modern Multi-Dimensional Energy -- 4.4 Modeling Review -- 4.5 Integrated Energy Management System -- 4.6 Energy Conversion -- 4.7 Economic and Environmental Impact -- 4.8 Future Energy Systems -- 4.9 Conclusion -- References -- Chapter 5 Overview of the Optimal Operation of Heat and Electricity Incorporated Networks -- Abbreviations -- 5.1 Introduction -- 5.2 Integration of Electrical and Heat Energy Systems: The EH Solution -- 5.3 Energy Carriers and Elements of EH -- 5.3.1 Combined Heat and Power Technology -- 5.3.2 Power to Gas Technology -- 5.3.3 Compressed Air Energy Storage Technology -- 5.3.4 Water Desalination Unit -- 5.3.5 Plug-in Hybrid Electric Vehicles -- 5.4 Advantages of the EH System -- 5.4.1 Reliability Improvement -- 5.4.2 Flexibility Improvement -- 5.4.3 Operation Cost Reduction -- 5.4.4 Emissions Mitigation -- 5.5 Applications of the EH System -- 5.5.1 Residential Buildings -- 5.5.2 Commercial Buildings -- 5.5.3 Industrial Factories -- 5.5.4 Agricultural Sector -- 5.6 Challenges and Opportunities -- 5.6.1 Technical Point of View -- 5.6.2 Economic Point of View -- 5.6.3 Environment Point of View -- 5.6.4 Social Point of View -- 5.7 The Role of DSM Programs in the EH System -- 5.7.1 Demand Response Programs -- 5.7.2 Energy Efficiency Programs -- 5.8 Management Methods of the EH System -- 5.9 Conclusion -- References -- Chapter 6 Modern Heat and Electricity Incorporated Networks Targeted by Coordinated Cyberattacks for Congestion and Cascading Outages -- Abbreviations -- 6.1 Introduction -- 6.1.1 Scope of the Chapter. 6.1.2 Literature Review -- 6.1.3 Research Gap and Contributions of This Chapter -- 6.1.4 Organization of the Chapter -- 6.2 Proposed Framework -- 6.2.1 Illustration of the Proposed Framework -- 6.2.2 Assumptions of the Attack Framework -- 6.3 Problem Formulation -- 6.3.1 Objective Functions of the Attack Framework -- 6.3.2 Technical Constraints -- 6.3.2.1 Constraints Related to Bypassing DCSE BDD and ACSE BDD -- 6.3.2.2 Constraints Related to Thermal Units and CHP Units -- 6.3.2.3 Constraints Related to Wind Turbines -- 6.3.2.4 Constraints Related to PV Modules -- 6.3.2.5 Power and Heat Balance Constraints -- 6.3.2.6 Rest of System& -- rsquo -- s Constraints -- 6.4 Case Study and Simulation Results -- 6.4.1 Utilized Solver -- 6.4.2 Case Study -- 6.4.3 Investigated Scenarios of Cyberattacks -- 6.4.4 Numerical Results and Analysis -- 6.4.4.1 Elaboration of Results Associated with Scenario I -- 6.4.4.2 Elaboration of Results Associated with Scenario II -- 6.4.4.3 Elaboration of Results Associated with Scenario III -- 6.5 Conclusions and Future Work -- References -- Chapter 7 Cooperative Unmanned Aerial Vehicles for Monitoring and Maintenance of Heat and Electricity Incorporated Networks: A Learning-based Approach -- Abbreviations -- 7.1 Introduction -- 7.2 Application of Machine Learning in Power and Energy Networks -- 7.3 Unmanned Aerial Vehicle Applications in Energy and Electricity Incorporated Networks -- 7.4 Cooperative UAVs for Monitoring and Maintenance of Heat and Electricity Incorporated Networks: A Learning-based Approach -- 7.4.1 Network Topology -- 7.4.2 Solar Power Harvesting Model -- 7.4.3 SUAV´s Energy Outage -- 7.4.4 Mission Success Metric -- 7.4.5 Learning Strategy -- 7.4.6 Convergence Analysis -- 7.5 Simulation Results -- 7.6 Conclusions -- References. Chapter 8 Coordinated Operation and Planning of the Modern Heat and Electricity Incorporated Networks -- Nomenclature -- Abbreviation -- Parameters -- 8.1 Introduction -- 8.2 Literature Review -- 8.3 Optimal Operation and Planning -- 8.3.1 Optimization in Incorporated Energy Networks -- 8.3.2 Stochastic Modelling -- 8.3.3 Objective Function -- 8.4 Components and Constraints -- 8.4.1 Combined Heat and Power by Waste to Energy -- 8.4.2 Photovoltaic -- 8.4.3 Wind Turbine -- 8.4.4 Ground Source Heat Pump -- 8.4.5 Boiler -- 8.4.6 Heat Storage -- 8.4.7 Heat and Electricity Demand -- 8.5 Incorporated Heat and Electricity Structure -- 8.6 Case Study -- 8.7 Demand Profile -- 8.8 Economic and Environmental Features -- 8.9 Result and Discussion -- 8.10 Conclusion -- References -- Chapter 9 Optimal Coordinated Operation of Heat and Electricity Incorporated Networks -- Nomenclature -- A. Acronyms -- B. Indices -- C. Parameters -- D. Variables -- 9.1 Introduction -- 9.2 Heat and Electricity Incorporated Networks Components and Their Modeling -- 9.2.1 Loads/Services -- 9.2.1.1 Electrical Loads -- 9.2.1.2 Thermal Loads -- 9.2.1.3 Thermal Comfort -- 9.2.2 Equipment -- 9.2.2.1 Resources -- 9.2.2.2 Storages -- 9.2.3 Buildings/Smart Homes -- 9.2.4 Heat and Electricity Incorporated Network Operator -- 9.2.5 Different Layers/Networks and Their Connection -- 9.3 Uncertainties -- 9.4 Optimal Operation of Heat and Electricity Incorporated Networks -- 9.4.1 Definition of Optimal Operation -- 9.4.2 Different Goals in Heat and Electricity Incorporated Networks Exploitation -- 9.4.3 Different Levels of Heat and Electricity Incorporated Networks Exploitation -- 9.4.4 Existing Potential of Heat and Electricity Incorporated Networks for Optimizing Their Operation -- 9.4.4.1 Internal Potential -- 9.4.4.2 External Potential. 9.5 Market/Incentives -- 9.5.1 Energy Markets -- 9.5.2 Ancillary Services Market -- 9.5.3 Tax/Incentives Impact on Heat and Electricity Incorporated Networks Operation -- 9.5.4 Offering Strategy -- 9.6 Main Achievements on Heat and Electricity Incorporated Networks Operation -- 9.7 Conclusions -- References -- Chapter 10 Optimal Energy Management of a Demand Response Integrated Combined-Heat-and-Electrical Microgrid -- Nomenclatur -- A. Acronyms -- B. Sets and Indexes -- C. Parameters -- D. Variables -- 10.1 Introduction -- 10.2 CHEM Modeling -- 10.2.1 CHEM Structure -- 10.2.2 Modeling for Heat Network -- 10.2.2.1 District Heating Network Background -- 10.2.2.2 Nodal Flow Balance -- 10.2.2.3 Calculation of Heat Energy -- 10.2.2.4 Mixing Equation for Temperature -- 10.2.2.5 Heat Dynamics and Loss -- 10.2.3 Indoor Temperature Control -- 10.2.4 Price-based Demand Response -- 10.3 Coordinated Optimization of CHEM -- 10.3.1 Objective Function -- 10.3.2 Operational Constraints -- 10.3.3 Solution Method -- 10.4 Case Studies -- 10.4.1 Simulation Test Setup -- 10.4.1.1 33-bus CHEM -- 10.4.1.2 69-bus CHEM -- 10.4.2 Discussions on Simulation Results -- 10.4.2.1 33-bus CHEM -- 10.4.2.2 69-bus CHEM -- 10.4.3 Conclusion -- References -- Chapter 11 Optimal Operation of Residential Heating Systems in Electricity Markets Leveraging Joint Power-Heat Flexibility -- 11.1 Why Joint Heat-Power Flexibility? -- 11.2 Literature Review -- 11.3 Intelligent Heating Systems -- 11.4 Flexibility Potentials of Heating Systems -- 11.5 Heat Controllers -- 11.6 Thermal Dynamics of Buildings -- 11.7 Economic Heat Controller in Dynamic Electricity Market -- 11.7.1 Objective Function of EMPC -- 11.7.2 Case Study of EMPC -- 11.8 Flexible Heat Controller in Uncertain Electricity Market -- 11.8.1 Objective Function of SEMPC -- 11.8.2 First Stage. 11.8.3 Second Stage. |
Record Nr. | UNINA-9910632500803321 |
Daneshvar Mohammadreza | ||
Newark : , : John Wiley & Sons, Incorporated, , 2022 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Interconnected Modern Multi-Energy Networks and Intelligent Transportation Systems : Towards a Green Economy and Sustainable Development |
Autore | Daneshvar Mohammadreza |
Edizione | [1st ed.] |
Pubbl/distr/stampa | Newark : , : John Wiley & Sons, Incorporated, , 2024 |
Descrizione fisica | 1 online resource (475 pages) |
Altri autori (Persone) |
Mohammadi-IvatlooBehnam
Anvari-MoghaddamAmjad RazzaghiReza |
Collana | IEEE Press Series on Power and Energy Systems Series |
ISBN |
1-394-18878-1
1-394-18876-5 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Cover -- Title Page -- Copyright Page -- Contents -- List of Contributors -- About the Editors -- Preface -- Chapter 1 The Necessity for Modernizing the Coupled Structure of Intelligent Transportation Systems and Multi-Energy Networks -- 1.1 Introduction -- 1.2 Applications of Intelligent Transportation Systems -- 1.3 Coupled Structure of ITSs and Multi-Energy Networks -- 1.4 Summary -- References -- Chapter 2 Green Transportation Systems -- 2.1 Introduction -- 2.1.1 Motivation and Problem Description -- 2.1.2 Literature Review -- 2.1.3 Chapter Organization -- 2.2 History of Transportation -- 2.3 Transportation Expansion Issues -- 2.3.1 Urbanization's Growth -- 2.3.2 Traffic Growth -- 2.3.3 Environmental Issues -- 2.4 Definition of Green Transportation -- 2.5 Advantages of Green Transportation -- 2.6 International Agreements -- 2.7 Challenges to GT -- 2.7.1 Institutional Challenges -- 2.7.2 Regulatory Challenges and Barriers -- 2.7.3 Technology-related Barriers -- 2.7.4 Financial Barriers -- 2.7.5 General Admission -- 2.8 Green Transportation's Effects on Multi-Energy Networks -- 2.9 Implementation Strategies for the Green Transportation System -- 2.9.1 Actions Performed to Promote Green Transportation -- 2.10 New Technologies for Green Transportation -- 2.10.1 Energy Technology -- 2.10.2 Environmentally Friendly Technologies -- 2.10.2.1 Greener Tires -- 2.10.2.2 Reusing Energy -- 2.11 Intelligent Transportation System -- 2.11.1 Vehicle Communication in Intelligent Transportation -- 2.12 Conclusion -- References -- Chapter 3 Techno-Economic-Environmental Assessment of Green Transportation Systems -- 3.1 Introduction -- 3.2 Technologies for Green Transportation Systems -- 3.2.1 Eco-Friendly and Energy-Efficient Technologies -- 3.2.2 Intelligent System Technologies -- 3.2.3 Integrated Management Technologies -- 3.2.4 Distributed Ledger Technologies.
3.3 Economic Implications of Green Transportation Systems -- 3.3.1 Cost Saving -- 3.3.2 Job Creation -- 3.4 Environmental Implications of Green Transportation Systems -- 3.4.1 Lowering Emission of Pollutants -- 3.4.2 Improving Human Health Status -- 3.5 Conclusion -- References -- Chapter 4 Urban Integrated Sustainable Transportation Networks -- 4.1 Introduction -- 4.2 Necessity of Sustainable Transportation -- 4.2.1 Impact of Conventional Transportation on Climate Change -- 4.2.2 Impact of Transportation-related Emissions on Public Health -- 4.2.3 Role of Road Transportation in Carbon Emissions -- 4.2.4 Existing Global Energy Market -- 4.2.5 Potential Approaches for Mitigating Emissions -- 4.3 Challenges and Opportunities Associated with the Implementation of Sustainable Transportation -- 4.3.1 Growing Car Sector -- 4.3.2 Urban Growth -- 4.3.3 Transformation Cost -- 4.3.4 Planning Challenges -- 4.3.5 Safety Risks -- 4.3.6 Security Challenges -- 4.3.7 Social Benefits -- 4.3.8 Environmental Benefits -- 4.3.9 Economic Benefits -- 4.4 Modes of Sustainable Transportation -- 4.4.1 Walk -- 4.4.2 Bicycle -- 4.4.3 Electric Bike/Scooter -- 4.4.4 Carpooling -- 4.4.5 Electric Car -- 4.4.6 Public Transportation -- 4.5 Sustainable Transportation in Modern Urban Advancement -- 4.5.1 Importance of Sustainable Transport in Urban Growth -- 4.5.1.1 Urban Planning -- 4.5.1.2 Smart Cities -- 4.5.1.3 Economic Growth -- 4.5.1.4 Promoting Sustainable Transport -- 4.6 Infrastructure for Sustainable Transportation -- 4.6.1 Governance -- 4.6.2 Interaction with Electricity Infrastructure -- 4.6.2.1 Electric Buses and the Power Grid -- 4.6.2.2 Operational Strategies -- 4.6.2.3 Compensation for the Minimum Demand Reduction -- 4.6.2.4 Flexible Operation of E-mobility -- 4.6.3 Features of Integrated Sustainable Transportation Networks. 4.6.3.1 Transport Resilience and Sustainability -- 4.6.4 Transition to a Sustainable Transportation -- 4.7 Conclusion -- References -- Chapter 5 Multi-Energy Technologies in Green and Integrated Transportation Networks -- 5.1 Introduction -- 5.2 Definition of Green Transportation -- 5.3 Technological Development and Managerial Integration for Green Transportation -- 5.3.1 Energy-Efficient Technology -- 5.3.2 Eco-Friendly Technology -- 5.3.3 Intelligent Transportation System (ITS) -- 5.3.4 Integrating Systems: Efficiency by Design -- 5.3.5 Energy Re-using -- 5.3.6 Solar Impulse Technology -- 5.3.7 Integrated Management for Green Transportation -- 5.3.7.1 Infrastructure Development -- 5.3.7.2 Alternative Measures in Urban Transportation -- 5.4 Definition and Features of Integrated Multi-Energy System -- 5.4.1 Definition of Integrated Multi-Energy System -- 5.4.2 Major Characteristics of Integrated Multi-Energy System -- 5.4.3 Role and Effects of Multi-Energy Conversion Systems in Green and Integrated Transportation Networks -- 5.5 Electric Vehicle Integration with Renewable Energy Sources -- 5.5.1 Electric Vehicle Integration with Wind Energy -- 5.5.2 Electric Vehicle Integration with Solar Energy -- 5.6 Hybrid Fuel Cell/Battery Vehicle Systems -- 5.6.1 PEMFC-Based Fuel Cell Vehicle Systems -- 5.6.2 SOFC-Based Fuel Cell Vehicle Systems -- 5.6.3 Present Situation of Fuel Cell Vehicle Technology -- 5.6.4 Confronts of Fuel Cell Vehicle Technology -- 5.7 Barriers and Challenges -- 5.7.1 Societal Barriers and Challenges -- 5.7.2 Technological Barriers and Challenges -- 5.7.3 Financial Barriers and Challenges -- 5.8 Conclusion -- References -- Chapter 6 Flexible Operation of Power-To-X Energy Systems in Transportation Networks -- Table of Acronyms -- 6.1 Introduction -- 6.1.1 Problem Description and Motivation -- 6.1.2 State of the Art. 6.1.3 Contributions and Organization -- 6.2 Power to Hydrogen -- 6.3 Power to Methane -- 6.4 Power to Chemical (P2C) -- 6.4.1 Power to Diesel (P2D) -- 6.4.2 Power-to-Formic Acid (P2FA) -- 6.4.3 Power to Methanol (P2Me) -- 6.5 Power to Heat (P2H) -- 6.6 Power to Transport (P2T) -- 6.7 Power Demand Flexibility -- 6.8 Conclusion -- References -- Chapter 7 Integration of Electric Vehicles into Multi-energy Systems -- Abbreviations -- 7.1 Introduction -- 7.2 Multi-energy Systems Structure -- 7.2.1 General Aspects of MES Modeling -- 7.2.2 Energy Hub Concept -- 7.2.3 MES Modeling Process and Challenges -- 7.3 Integration of EVs in MES -- 7.3.1 Integration of EV with RES -- 7.3.1.1 Integration of EV with Wind Energy -- 7.3.1.2 Integration of EV with Solar Energy -- 7.3.2 Integration of EV with Power Grids -- 7.3.2.1 EV and Distribution Systems -- 7.3.2.2 EV and Microgrids -- 7.3.2.3 EVs and Homes/Buildings -- 7.3.2.4 EV and EH -- 7.3.2.5 EV and Virtual Power Plants -- 7.3.3 EV Charging/Discharging Strategies -- 7.3.3.1 Vehicle-to-Everything (V2X) -- 7.3.3.2 Smart Bidirectional Charging -- 7.4 Conclusion -- References -- Chapter 8 Self-Driving Vehicle Systems in Intelligent Transportation Networks -- 8.1 Introduction -- 8.2 Brief History -- 8.3 Literature Review -- 8.4 Advantages and Challenges -- 8.5 Sensing -- 8.6 Perception -- 8.6.1 Object Detection and Tracking -- 8.6.2 Simultaneous Localization and Mapping -- 8.7 Planning and Control -- 8.8 Conclusion -- Acknowledgment -- References -- Chapter 9 Energy Storage Technologies and Control Systems for Electric Vehicles -- Acronyms -- 9.1 Introduction -- 9.2 Fuel Cell -- 9.2.1 Types of Fuel Cells -- 9.2.1.1 Proton Exchange Membrane Fuel Cell -- 9.2.1.2 Phosphoric Acid Fuel Cell (PAFC) -- 9.2.1.3 Alkaline Fuel Cell -- 9.2.1.4 Molten Carbonate Fuel Cell -- 9.2.1.5 Solid Oxide Fuel Cell. 9.2.1.6 Direct Methanol Fuel Cell -- 9.3 Battery Technologies for Electric Vehicles -- 9.3.1 Lead-Acid Batteries -- 9.3.2 Nickel-Cadmium Battery (NiCd) -- 9.3.3 Nickel-Metal-Hydride (Ni-MH) -- 9.3.4 Lithium-ion (Li-ion) -- 9.3.4.1 Lithium Cobalt Oxide (LiCoO2, LCO) -- 9.3.4.2 Lithium Manganese Oxide (LiMn2O4, LMO/Spinel) -- 9.3.4.3 Lithium Iron Phosphate (LiFePO4, LFP) -- 9.4 Overview of Brushless Motor -- 9.4.1 Mathematical Modeling of BLDC Motor -- 9.4.1.1 Electric Model of BLDC -- 9.4.1.2 Mechanical Model of BLDC -- 9.5 BLDC Motor Control Strategy for Electric Vehicles -- 9.5.1 PI Controller -- 9.5.2 PID Controller -- 9.5.3 Fuzzy Logic Controller -- 9.5.3.1 Fuzzification -- 9.5.3.2 Fuzzy Inference -- 9.5.3.3 Defuzzification -- 9.6 Simulation Results -- 9.7 Environnemental Impact of EVs -- 9.8 EVs and Modern Technologies -- 9.9 Challenges and Perspectives of EVs -- 9.10 Conclusion -- Acknowledgments -- References -- Chapter 10 Electric Vehicle Path Towards Sustainable Transportation: A Comprehensive Structure -- Nomenclature -- 10.1 Introduction -- 10.2 Optimum Design of EVs -- 10.3 Characterization of EV Battery System -- 10.3.1 Thermal Management of Battery -- 10.3.2 Assessment of Battery System -- 10.4 Control System of EVs -- 10.5 Reliability Assessment of EV -- 10.6 Assessment of EV Charging Station -- 10.6.1 Location Assessment for EV Charging Station -- 10.6.2 Characterization of Charging Station -- 10.7 Worldwide Policy Framework for EV -- 10.8 Electric Vehicles on the Sustainability and Reliability of Transportation Network -- 10.9 Recent Trends and Future Challenges -- References -- Chapter 11 Electric Vehicle Charging Management in Parking Structures -- 11.1 Introduction -- 11.2 EV Charging Management Schemes -- 11.3 Fair Charging Management -- 11.3.1 Preliminaries on á-Fairness -- 11.3.2 Generic-Fair Energy Allocation Algorithm. 11.4 Delay-Fair Charging Management. |
Record Nr. | UNINA-9910830452503321 |
Daneshvar Mohammadreza | ||
Newark : , : John Wiley & Sons, Incorporated, , 2024 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Interconnected Modern Multi-Energy Networks and Intelligent Transportation Systems : Towards a Green Economy and Sustainable Development |
Autore | Daneshvar Mohammadreza |
Edizione | [1st ed.] |
Pubbl/distr/stampa | Newark : , : John Wiley & Sons, Incorporated, , 2024 |
Descrizione fisica | 1 online resource (475 pages) |
Altri autori (Persone) |
Mohammadi-IvatlooBehnam
Anvari-MoghaddamAmjad RazzaghiReza |
Collana | IEEE Press Series on Power and Energy Systems Series |
Soggetto topico |
Sustainable development
Renewable energy sources |
ISBN |
9781394188789
1394188781 9781394188765 1394188765 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Cover -- Title Page -- Copyright Page -- Contents -- List of Contributors -- About the Editors -- Preface -- Chapter 1 The Necessity for Modernizing the Coupled Structure of Intelligent Transportation Systems and Multi-Energy Networks -- 1.1 Introduction -- 1.2 Applications of Intelligent Transportation Systems -- 1.3 Coupled Structure of ITSs and Multi-Energy Networks -- 1.4 Summary -- References -- Chapter 2 Green Transportation Systems -- 2.1 Introduction -- 2.1.1 Motivation and Problem Description -- 2.1.2 Literature Review -- 2.1.3 Chapter Organization -- 2.2 History of Transportation -- 2.3 Transportation Expansion Issues -- 2.3.1 Urbanization's Growth -- 2.3.2 Traffic Growth -- 2.3.3 Environmental Issues -- 2.4 Definition of Green Transportation -- 2.5 Advantages of Green Transportation -- 2.6 International Agreements -- 2.7 Challenges to GT -- 2.7.1 Institutional Challenges -- 2.7.2 Regulatory Challenges and Barriers -- 2.7.3 Technology-related Barriers -- 2.7.4 Financial Barriers -- 2.7.5 General Admission -- 2.8 Green Transportation's Effects on Multi-Energy Networks -- 2.9 Implementation Strategies for the Green Transportation System -- 2.9.1 Actions Performed to Promote Green Transportation -- 2.10 New Technologies for Green Transportation -- 2.10.1 Energy Technology -- 2.10.2 Environmentally Friendly Technologies -- 2.10.2.1 Greener Tires -- 2.10.2.2 Reusing Energy -- 2.11 Intelligent Transportation System -- 2.11.1 Vehicle Communication in Intelligent Transportation -- 2.12 Conclusion -- References -- Chapter 3 Techno-Economic-Environmental Assessment of Green Transportation Systems -- 3.1 Introduction -- 3.2 Technologies for Green Transportation Systems -- 3.2.1 Eco-Friendly and Energy-Efficient Technologies -- 3.2.2 Intelligent System Technologies -- 3.2.3 Integrated Management Technologies -- 3.2.4 Distributed Ledger Technologies.
3.3 Economic Implications of Green Transportation Systems -- 3.3.1 Cost Saving -- 3.3.2 Job Creation -- 3.4 Environmental Implications of Green Transportation Systems -- 3.4.1 Lowering Emission of Pollutants -- 3.4.2 Improving Human Health Status -- 3.5 Conclusion -- References -- Chapter 4 Urban Integrated Sustainable Transportation Networks -- 4.1 Introduction -- 4.2 Necessity of Sustainable Transportation -- 4.2.1 Impact of Conventional Transportation on Climate Change -- 4.2.2 Impact of Transportation-related Emissions on Public Health -- 4.2.3 Role of Road Transportation in Carbon Emissions -- 4.2.4 Existing Global Energy Market -- 4.2.5 Potential Approaches for Mitigating Emissions -- 4.3 Challenges and Opportunities Associated with the Implementation of Sustainable Transportation -- 4.3.1 Growing Car Sector -- 4.3.2 Urban Growth -- 4.3.3 Transformation Cost -- 4.3.4 Planning Challenges -- 4.3.5 Safety Risks -- 4.3.6 Security Challenges -- 4.3.7 Social Benefits -- 4.3.8 Environmental Benefits -- 4.3.9 Economic Benefits -- 4.4 Modes of Sustainable Transportation -- 4.4.1 Walk -- 4.4.2 Bicycle -- 4.4.3 Electric Bike/Scooter -- 4.4.4 Carpooling -- 4.4.5 Electric Car -- 4.4.6 Public Transportation -- 4.5 Sustainable Transportation in Modern Urban Advancement -- 4.5.1 Importance of Sustainable Transport in Urban Growth -- 4.5.1.1 Urban Planning -- 4.5.1.2 Smart Cities -- 4.5.1.3 Economic Growth -- 4.5.1.4 Promoting Sustainable Transport -- 4.6 Infrastructure for Sustainable Transportation -- 4.6.1 Governance -- 4.6.2 Interaction with Electricity Infrastructure -- 4.6.2.1 Electric Buses and the Power Grid -- 4.6.2.2 Operational Strategies -- 4.6.2.3 Compensation for the Minimum Demand Reduction -- 4.6.2.4 Flexible Operation of E-mobility -- 4.6.3 Features of Integrated Sustainable Transportation Networks. 4.6.3.1 Transport Resilience and Sustainability -- 4.6.4 Transition to a Sustainable Transportation -- 4.7 Conclusion -- References -- Chapter 5 Multi-Energy Technologies in Green and Integrated Transportation Networks -- 5.1 Introduction -- 5.2 Definition of Green Transportation -- 5.3 Technological Development and Managerial Integration for Green Transportation -- 5.3.1 Energy-Efficient Technology -- 5.3.2 Eco-Friendly Technology -- 5.3.3 Intelligent Transportation System (ITS) -- 5.3.4 Integrating Systems: Efficiency by Design -- 5.3.5 Energy Re-using -- 5.3.6 Solar Impulse Technology -- 5.3.7 Integrated Management for Green Transportation -- 5.3.7.1 Infrastructure Development -- 5.3.7.2 Alternative Measures in Urban Transportation -- 5.4 Definition and Features of Integrated Multi-Energy System -- 5.4.1 Definition of Integrated Multi-Energy System -- 5.4.2 Major Characteristics of Integrated Multi-Energy System -- 5.4.3 Role and Effects of Multi-Energy Conversion Systems in Green and Integrated Transportation Networks -- 5.5 Electric Vehicle Integration with Renewable Energy Sources -- 5.5.1 Electric Vehicle Integration with Wind Energy -- 5.5.2 Electric Vehicle Integration with Solar Energy -- 5.6 Hybrid Fuel Cell/Battery Vehicle Systems -- 5.6.1 PEMFC-Based Fuel Cell Vehicle Systems -- 5.6.2 SOFC-Based Fuel Cell Vehicle Systems -- 5.6.3 Present Situation of Fuel Cell Vehicle Technology -- 5.6.4 Confronts of Fuel Cell Vehicle Technology -- 5.7 Barriers and Challenges -- 5.7.1 Societal Barriers and Challenges -- 5.7.2 Technological Barriers and Challenges -- 5.7.3 Financial Barriers and Challenges -- 5.8 Conclusion -- References -- Chapter 6 Flexible Operation of Power-To-X Energy Systems in Transportation Networks -- Table of Acronyms -- 6.1 Introduction -- 6.1.1 Problem Description and Motivation -- 6.1.2 State of the Art. 6.1.3 Contributions and Organization -- 6.2 Power to Hydrogen -- 6.3 Power to Methane -- 6.4 Power to Chemical (P2C) -- 6.4.1 Power to Diesel (P2D) -- 6.4.2 Power-to-Formic Acid (P2FA) -- 6.4.3 Power to Methanol (P2Me) -- 6.5 Power to Heat (P2H) -- 6.6 Power to Transport (P2T) -- 6.7 Power Demand Flexibility -- 6.8 Conclusion -- References -- Chapter 7 Integration of Electric Vehicles into Multi-energy Systems -- Abbreviations -- 7.1 Introduction -- 7.2 Multi-energy Systems Structure -- 7.2.1 General Aspects of MES Modeling -- 7.2.2 Energy Hub Concept -- 7.2.3 MES Modeling Process and Challenges -- 7.3 Integration of EVs in MES -- 7.3.1 Integration of EV with RES -- 7.3.1.1 Integration of EV with Wind Energy -- 7.3.1.2 Integration of EV with Solar Energy -- 7.3.2 Integration of EV with Power Grids -- 7.3.2.1 EV and Distribution Systems -- 7.3.2.2 EV and Microgrids -- 7.3.2.3 EVs and Homes/Buildings -- 7.3.2.4 EV and EH -- 7.3.2.5 EV and Virtual Power Plants -- 7.3.3 EV Charging/Discharging Strategies -- 7.3.3.1 Vehicle-to-Everything (V2X) -- 7.3.3.2 Smart Bidirectional Charging -- 7.4 Conclusion -- References -- Chapter 8 Self-Driving Vehicle Systems in Intelligent Transportation Networks -- 8.1 Introduction -- 8.2 Brief History -- 8.3 Literature Review -- 8.4 Advantages and Challenges -- 8.5 Sensing -- 8.6 Perception -- 8.6.1 Object Detection and Tracking -- 8.6.2 Simultaneous Localization and Mapping -- 8.7 Planning and Control -- 8.8 Conclusion -- Acknowledgment -- References -- Chapter 9 Energy Storage Technologies and Control Systems for Electric Vehicles -- Acronyms -- 9.1 Introduction -- 9.2 Fuel Cell -- 9.2.1 Types of Fuel Cells -- 9.2.1.1 Proton Exchange Membrane Fuel Cell -- 9.2.1.2 Phosphoric Acid Fuel Cell (PAFC) -- 9.2.1.3 Alkaline Fuel Cell -- 9.2.1.4 Molten Carbonate Fuel Cell -- 9.2.1.5 Solid Oxide Fuel Cell. 9.2.1.6 Direct Methanol Fuel Cell -- 9.3 Battery Technologies for Electric Vehicles -- 9.3.1 Lead-Acid Batteries -- 9.3.2 Nickel-Cadmium Battery (NiCd) -- 9.3.3 Nickel-Metal-Hydride (Ni-MH) -- 9.3.4 Lithium-ion (Li-ion) -- 9.3.4.1 Lithium Cobalt Oxide (LiCoO2, LCO) -- 9.3.4.2 Lithium Manganese Oxide (LiMn2O4, LMO/Spinel) -- 9.3.4.3 Lithium Iron Phosphate (LiFePO4, LFP) -- 9.4 Overview of Brushless Motor -- 9.4.1 Mathematical Modeling of BLDC Motor -- 9.4.1.1 Electric Model of BLDC -- 9.4.1.2 Mechanical Model of BLDC -- 9.5 BLDC Motor Control Strategy for Electric Vehicles -- 9.5.1 PI Controller -- 9.5.2 PID Controller -- 9.5.3 Fuzzy Logic Controller -- 9.5.3.1 Fuzzification -- 9.5.3.2 Fuzzy Inference -- 9.5.3.3 Defuzzification -- 9.6 Simulation Results -- 9.7 Environnemental Impact of EVs -- 9.8 EVs and Modern Technologies -- 9.9 Challenges and Perspectives of EVs -- 9.10 Conclusion -- Acknowledgments -- References -- Chapter 10 Electric Vehicle Path Towards Sustainable Transportation: A Comprehensive Structure -- Nomenclature -- 10.1 Introduction -- 10.2 Optimum Design of EVs -- 10.3 Characterization of EV Battery System -- 10.3.1 Thermal Management of Battery -- 10.3.2 Assessment of Battery System -- 10.4 Control System of EVs -- 10.5 Reliability Assessment of EV -- 10.6 Assessment of EV Charging Station -- 10.6.1 Location Assessment for EV Charging Station -- 10.6.2 Characterization of Charging Station -- 10.7 Worldwide Policy Framework for EV -- 10.8 Electric Vehicles on the Sustainability and Reliability of Transportation Network -- 10.9 Recent Trends and Future Challenges -- References -- Chapter 11 Electric Vehicle Charging Management in Parking Structures -- 11.1 Introduction -- 11.2 EV Charging Management Schemes -- 11.3 Fair Charging Management -- 11.3.1 Preliminaries on á-Fairness -- 11.3.2 Generic-Fair Energy Allocation Algorithm. 11.4 Delay-Fair Charging Management. |
Record Nr. | UNINA-9910877176703321 |
Daneshvar Mohammadreza | ||
Newark : , : John Wiley & Sons, Incorporated, , 2024 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|