top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Calculations and simulations of low-dimensional materials : tailoring properties for applications / / Ying Dai [and three others]
Calculations and simulations of low-dimensional materials : tailoring properties for applications / / Ying Dai [and three others]
Autore Dai Ying
Pubbl/distr/stampa Weinheim, Germany : , : Wiley-VCH, , [2023]
Descrizione fisica 1 online resource (259 pages)
Disciplina 662.2
Soggetto topico Materials science
ISBN 3-527-83213-0
3-527-83212-2
3-527-83211-4
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Cover -- Title Page -- Copyright -- Contents -- Preface -- Chapter 1 An Introduction to Density Functional Theory (DFT) and Derivatives -- 1.1 The Problem of a N‐electron System -- 1.2 The Thomas-Fermi Theory for Electron Density -- 1.3 The First Hohenberg-Kohn Theorem -- 1.4 The Second Hohenberg-Kohn Theorem -- 1.5 The Kohn-Sham Equations -- 1.6 The Local Density Approximation (LDA) -- 1.7 The Generalized Gradient Approximation (GGA) -- 1.8 The LDA+U Method -- 1.9 The Heyd-Scuseria-Ernzerhof Density Functional -- 1.9.1 Introduction to Tight‐Binding Approximation -- 1.9.2 Matrix Elements of Tight‐Binding Hamiltonian -- 1.9.3 Matrix Elements with the Help of Wannier Function -- 1.9.4 Example for a Graphene Model -- 1.10 Introduction to k ⋅ p Perturbation Theory -- 1.10.1 Solution for Non‐degenerate Bands -- 1.10.2 Solution for Degenerate Bands -- 1.10.3 Explicit Hamiltonian of k ⋅ p Perturbation Theory -- References -- Chapter 2 New Physical Effects Based on Band Structure -- 2.1 Valley Physics -- 2.1.1 Spontaneous Valley Polarization -- 2.1.2 Valley Polarization by Foreign Atom Doping -- 2.1.3 Valley Polarization in van der Waals Heterostructures -- 2.2 Rashba Effects -- References -- Chapter 3 Ferromagnetic Order in Two‐ and One‐Dimensional Materials -- 3.1 Intrinsic Ferromagnetic Order in 2D Materials -- 3.2 Intrinsic Ferromagnetic Order in 1D Molecular Nanowires -- References -- Chapter 4 Two‐Dimensional Topological States -- 4.1 Topological Insulators -- 4.1.1 Graphene -- 4.1.2 HgTe/CdTe Quantum Wells -- 4.1.3 Z2 Invariant and Spin Chern Number -- 4.1.4 Large Gap Quantum Spin Hall Insulators -- 4.2 Topological Crystalline Insulators -- 4.2.1 SnTe Thin Films -- 4.2.2 IV-VI Monolayers -- 4.2.3 Topological Phase Transition Between 2D TCI and TI -- 4.2.4 Dual Topological Insulator -- 4.2.5 TCI in 2D Ferromagnets.
4.3 Quantum Anomalous Hall Effect -- 4.4 Antiferromagnetic Topological Insulators -- 4.5 Mixed Topological Semimetals -- References -- Chapter 5 Calculation of Excited‐State Properties -- 5.1 Green's Function Many‐Body Perturbation Theory -- 5.2 Excitonic Effects and Band Gap Renormalization in Two‐Dimensional Materials -- 5.3 Electron-Phonon Effects on the Excited‐state Properties -- 5.4 Nonlinear Optical Response -- 5.5 Optical Properties of van der Waals Heterostructures of Two‐Dimensional Materials -- References -- Chapter 6 Charge Carrier Dynamics from Simulations -- 6.1 Time‐Dependent Density Functional Theory and Nonadiabatic Molecular Dynamics -- 6.2 Applications of TDDFT and NAMD in Two‐Dimensional Materials -- References -- Chapter 7 Simulations for Photocatalytic Materials -- 7.1 Photocatalysis and Photocatalytic Reactions -- 7.2 Photoresponsivity and Photocurrent from Simulations -- 7.3 Simulation for Localized Surface Plasmon Resonance -- References -- Chapter 8 Simulations for Electrochemical Reactions -- 8.1 Single‐atom Catalysts -- 8.2 Stability of Catalyst -- 8.3 Electrochemical Reactions -- 8.3.1 Hydrogen Evolution Reaction (HER) -- 8.3.2 Oxygen Evolution Reaction (OER) -- 8.3.3 Oxygen Reduction Reaction (ORR) -- 8.3.4 Nitrogen Reduction Reaction (NRR) -- 8.3.5 Electrocatalytic Activity Evaluated from the First‐principles Calculations -- 8.3.6 Simulations for Nitrogen Reduction Reaction -- References -- Index -- EULA.
Record Nr. UNINA-9910830116103321
Dai Ying  
Weinheim, Germany : , : Wiley-VCH, , [2023]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Calculations and Simulations of Low-Dimensional Materials : Tailoring Properties for Applications
Calculations and Simulations of Low-Dimensional Materials : Tailoring Properties for Applications
Autore Dai Ying
Pubbl/distr/stampa Newark : , : John Wiley & Sons, Incorporated, , 2022
Descrizione fisica 1 online resource (259 pages)
Altri autori (Persone) WeiWei
MaYandong
NiuChengwang
Soggetto genere / forma Electronic books.
ISBN 3-527-83213-0
3-527-83212-2
3-527-83211-4
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Cover -- Title Page -- Copyright -- Contents -- Preface -- Chapter 1 An Introduction to Density Functional Theory (DFT) and Derivatives -- 1.1 The Problem of a N‐electron System -- 1.2 The Thomas-Fermi Theory for Electron Density -- 1.3 The First Hohenberg-Kohn Theorem -- 1.4 The Second Hohenberg-Kohn Theorem -- 1.5 The Kohn-Sham Equations -- 1.6 The Local Density Approximation (LDA) -- 1.7 The Generalized Gradient Approximation (GGA) -- 1.8 The LDA+U Method -- 1.9 The Heyd-Scuseria-Ernzerhof Density Functional -- 1.9.1 Introduction to Tight‐Binding Approximation -- 1.9.2 Matrix Elements of Tight‐Binding Hamiltonian -- 1.9.3 Matrix Elements with the Help of Wannier Function -- 1.9.4 Example for a Graphene Model -- 1.10 Introduction to k ⋅ p Perturbation Theory -- 1.10.1 Solution for Non‐degenerate Bands -- 1.10.2 Solution for Degenerate Bands -- 1.10.3 Explicit Hamiltonian of k ⋅ p Perturbation Theory -- References -- Chapter 2 New Physical Effects Based on Band Structure -- 2.1 Valley Physics -- 2.1.1 Spontaneous Valley Polarization -- 2.1.2 Valley Polarization by Foreign Atom Doping -- 2.1.3 Valley Polarization in van der Waals Heterostructures -- 2.2 Rashba Effects -- References -- Chapter 3 Ferromagnetic Order in Two‐ and One‐Dimensional Materials -- 3.1 Intrinsic Ferromagnetic Order in 2D Materials -- 3.2 Intrinsic Ferromagnetic Order in 1D Molecular Nanowires -- References -- Chapter 4 Two‐Dimensional Topological States -- 4.1 Topological Insulators -- 4.1.1 Graphene -- 4.1.2 HgTe/CdTe Quantum Wells -- 4.1.3 Z2 Invariant and Spin Chern Number -- 4.1.4 Large Gap Quantum Spin Hall Insulators -- 4.2 Topological Crystalline Insulators -- 4.2.1 SnTe Thin Films -- 4.2.2 IV-VI Monolayers -- 4.2.3 Topological Phase Transition Between 2D TCI and TI -- 4.2.4 Dual Topological Insulator -- 4.2.5 TCI in 2D Ferromagnets.
4.3 Quantum Anomalous Hall Effect -- 4.4 Antiferromagnetic Topological Insulators -- 4.5 Mixed Topological Semimetals -- References -- Chapter 5 Calculation of Excited‐State Properties -- 5.1 Green's Function Many‐Body Perturbation Theory -- 5.2 Excitonic Effects and Band Gap Renormalization in Two‐Dimensional Materials -- 5.3 Electron-Phonon Effects on the Excited‐state Properties -- 5.4 Nonlinear Optical Response -- 5.5 Optical Properties of van der Waals Heterostructures of Two‐Dimensional Materials -- References -- Chapter 6 Charge Carrier Dynamics from Simulations -- 6.1 Time‐Dependent Density Functional Theory and Nonadiabatic Molecular Dynamics -- 6.2 Applications of TDDFT and NAMD in Two‐Dimensional Materials -- References -- Chapter 7 Simulations for Photocatalytic Materials -- 7.1 Photocatalysis and Photocatalytic Reactions -- 7.2 Photoresponsivity and Photocurrent from Simulations -- 7.3 Simulation for Localized Surface Plasmon Resonance -- References -- Chapter 8 Simulations for Electrochemical Reactions -- 8.1 Single‐atom Catalysts -- 8.2 Stability of Catalyst -- 8.3 Electrochemical Reactions -- 8.3.1 Hydrogen Evolution Reaction (HER) -- 8.3.2 Oxygen Evolution Reaction (OER) -- 8.3.3 Oxygen Reduction Reaction (ORR) -- 8.3.4 Nitrogen Reduction Reaction (NRR) -- 8.3.5 Electrocatalytic Activity Evaluated from the First‐principles Calculations -- 8.3.6 Simulations for Nitrogen Reduction Reaction -- References -- Index -- EULA.
Record Nr. UNINA-9910590096103321
Dai Ying  
Newark : , : John Wiley & Sons, Incorporated, , 2022
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui