Vai al contenuto principale della pagina

Laser-based additive manufacturing : modeling, simulation, and experiments / / authors, Narendra B. Dahotre, Mangesh V. Pantawane, Shashank Sharma



(Visualizza in formato marc)    (Visualizza in BIBFRAME)

Autore: Dahotre Narendra B. Visualizza persona
Titolo: Laser-based additive manufacturing : modeling, simulation, and experiments / / authors, Narendra B. Dahotre, Mangesh V. Pantawane, Shashank Sharma Visualizza cluster
Pubblicazione: Weinheim, Germany : , : Wiley-VCH, , [2022]
©2022
Descrizione fisica: 1 online resource (303 pages)
Disciplina: 621.988
Soggetto topico: Additive manufacturing
Laser sintering
Persona (resp. second.): PantawaneMangesh V.
SharmaShashank
Nota di bibliografia: Includes bibliographical references and index.
Nota di contenuto: Cover -- Title Page -- Copyright -- Contents -- Preface -- Acronyms -- Chapter 1 Introduction to Additive Manufacturing -- 1.1 Evolution of Manufacturing -- 1.2 Concept of AM -- 1.3 Advantages over Conventional Manufacturing Techniques -- 1.4 Laser‐Based AM -- 1.4.1 Laser‐Based Directed Energy Deposition -- 1.4.1.1 Machine Design -- 1.4.1.2 Process Parameters -- 1.4.2 Laser Powder Bed Fusion -- 1.4.2.1 Process Parameters -- 1.4.3 Estimation of Energy Input in LAM Processes -- 1.4.4 Multi‐Step LAM Techniques -- References -- Chapter 2 Multiscale Computational Approaches to LAM -- 2.1 Computational Science -- 2.1.1 Computational Material Science -- 2.2 Multiscale Modeling -- 2.2.1 Nano‐Micro‐Scale Modeling -- 2.2.1.1 Molecular Dynamics and Density Functional Theory -- 2.2.1.2 Monte Carlo Method -- 2.2.2 Meso‐Macro Scale Modeling -- 2.2.2.1 Kinetic Monte Carlo Method -- 2.2.2.2 Cellular Automata -- 2.2.2.3 Phase‐Field Method -- 2.2.2.4 Finite Element Method -- 2.3 Integrated Computational Materials Engineering (ICME) -- References -- Chapter 3 Laser Matter Interaction in LAM -- 3.1 Introduction -- 3.1.1 Physical Phenomena in LAM -- 3.2 Components of Mathematical Models in Metal AM -- 3.3 Feedstock -- 3.3.1 Powder Bed Morphology in LPBF -- 3.3.1.1 Discrete Element Method -- 3.3.1.2 Powder Spreading Mechanism -- 3.3.2 Powder Stream Generation in LDED -- 3.3.2.1 Turbulent Gas Flow and Discrete Phase Model -- 3.3.2.2 Powder Stream Characteristics -- 3.3.3 Laser‐Feedstock Interaction -- 3.4 Thermo‐Fluidic Model in LAM -- 3.4.1 Laser Heat Source -- 3.4.2 Radiative and Convective Cooling -- 3.4.3 Recoil Pressure and Evaporative Cooling -- 3.4.4 Surface Tension -- 3.4.5 Free Surface Tracking Methods -- 3.5 Melt Hydrodynamics in LPBF -- 3.5.1 Thermo‐Fluidic Anatomy of a Single Track -- 3.5.2 Conduction Mode LPBF -- 3.5.3 Keyhole Mode LPBF.
3.5.4 Energy Coupling Mechanism -- 3.6 Melt Hydrodynamics in LDED -- 3.7 Multi‐Layer, Multi‐Track Approach -- 3.8 Computational Cost -- 3.9 Computationally Efficient Approach -- 3.10 Guidelines for Experimental Validation -- References -- Chapter 4 Thermokinetics, Microstructural Evolution, and Material Response -- 4.1 Thermokinetics in LAM -- 4.2 Solidification -- 4.2.1 Nucleation -- 4.2.1.1 Heterogeneous Nucleation Assisted by Inoculants -- 4.2.1.2 Homogeneous Nucleation -- 4.2.1.3 Nucleation Influenced by Acoustic Cavitation -- 4.2.2 Solidification Variables -- 4.2.2.1 Thermal Gradient -- 4.2.2.2 Solidification Rate -- 4.2.3 Growth and Orientation -- 4.2.4 Solidification Modes -- 4.2.5 Spatial Variation of Thermokinetic Parameters -- 4.2.5.1 Dependence on the Curvature of the Trailing Boundary -- 4.2.5.2 Solidification Rate and Thermal Gradient -- 4.2.5.3 Morphology Factor and Cooling Rate Variation -- 4.2.5.4 Columnar‐to‐Equiaxed Transition -- 4.3 Thermal Cycles in LAM Processes -- 4.3.1 Thermal Cycles in LPBF -- 4.3.1.1 Thermal Cycles During Layer Fabrication -- 4.3.1.2 Thermal Cycles During Fabrication of Multiple Layers -- 4.3.2 Thermal Cycles in LDED -- 4.3.2.1 Thermal Cycles During the Deposition of a Layer -- 4.3.2.2 Thermal Cycles During Fabrication of Multiple Layers -- 4.4 Phase Transformations in LAM -- 4.4.1 Thermal Cycle‐Driven Phase Evolution -- 4.4.2 Process‐Driven Phase Transformations -- 4.4.2.1 Isothermal Effect -- 4.4.2.2 Process Parameters -- 4.5 Effect of Process Parameters -- 4.5.1 Laser Beam Attributes -- 4.5.1.1 Laser Beam Diameter -- 4.5.1.2 Laser Power -- 4.5.1.3 Laser Speed -- 4.5.2 Laser Process Attributes -- 4.5.2.1 Scanning Strategy -- 4.5.2.2 Preheating the Substrate -- 4.5.2.3 Build Orientation -- 4.5.2.4 Interlayer Duration -- 4.5.2.5 Feed Rate -- 4.6 Effect of Melting Modes -- 4.7 Laser Operation Modes.
4.8 Material Response -- 4.8.1 Mechanical Response -- 4.8.1.1 Elastic Modulus -- 4.8.1.2 Fatigue -- 4.8.1.3 Creep -- 4.8.1.4 Wear -- 4.8.2 Electrochemical Response -- References -- Chapter 5 Residual Stress in LAM -- 5.1 Introduction -- 5.2 Thermo‐Mechanical Model: Mathematical Framework -- 5.2.1 Elasto‐Plastic Mechanical Model -- 5.2.2 Stress‐Strain Behavior -- 5.2.2.1 Elastic Region -- 5.2.2.2 Yield Stress -- 5.2.2.3 Plastic Region -- 5.2.2.4 Bauschinger Effect and Kinematic Hardening -- 5.2.3 Basic Elements of Elastic‐Plastic Theory -- 5.2.3.1 Stress -- 5.2.3.2 Strain -- 5.2.3.3 Equation of Motion -- 5.2.3.4 Criterion for Initial Yielding -- 5.2.3.5 Flow Rule -- 5.2.3.6 Isotropic Strain Hardening -- 5.2.3.7 Viscoplasticity and Thermal Softening -- 5.2.3.8 Kinematic Hardening -- 5.2.3.9 Consistency Condition -- 5.2.3.10 Elastic‐Plastic Stress‐Strain Relation -- 5.3 Thermal Elastic‐Plastic Formulation -- 5.3.1 Macro‐Scale Approaches -- 5.4 Evolution of Residual Stress in LAM -- 5.4.1 Thermo‐Mechanical Anatomy of a Single Track -- 5.4.2 Thermo‐Mechanical Anatomy of a Single Layer -- 5.4.3 Stress Evolution at Component Scale -- 5.4.4 Experimental Validation of Residual Stress -- 5.4.5 Integrated Experimental and Numerical Approach for the Mitigation of Residual Stress -- 5.4.5.1 Role of the Scanning Strategy -- 5.4.5.2 Role of Preheating -- 5.4.5.3 Real‐Time Control and Miscellaneous Approaches -- References -- Chapter 6 Surface Roughness in LAM -- 6.1 Introduction -- 6.2 Surface Roughness Characteristics in LAM -- 6.3 Surface Defects in LAM -- 6.4 Post‐LAM Surface Finishing -- References -- Index -- EULA.
Titolo autorizzato: Laser-based additive manufacturing  Visualizza cluster
ISBN: 3-527-82881-8
3-527-82880-X
Formato: Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione: Inglese
Record Nr.: 9910830768903321
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui