top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Laser-Based Additive Manufacturing : Modeling, Simulation, and Experiments
Laser-Based Additive Manufacturing : Modeling, Simulation, and Experiments
Autore Dahotre Narendra B
Pubbl/distr/stampa Newark : , : John Wiley & Sons, Incorporated, , 2022
Descrizione fisica 1 online resource (303 pages)
Altri autori (Persone) PantawaneMangesh V
SharmaShashank
Soggetto genere / forma Electronic books.
ISBN 3-527-82881-8
3-527-82880-X
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Cover -- Title Page -- Copyright -- Contents -- Preface -- Acronyms -- Chapter 1 Introduction to Additive Manufacturing -- 1.1 Evolution of Manufacturing -- 1.2 Concept of AM -- 1.3 Advantages over Conventional Manufacturing Techniques -- 1.4 Laser‐Based AM -- 1.4.1 Laser‐Based Directed Energy Deposition -- 1.4.1.1 Machine Design -- 1.4.1.2 Process Parameters -- 1.4.2 Laser Powder Bed Fusion -- 1.4.2.1 Process Parameters -- 1.4.3 Estimation of Energy Input in LAM Processes -- 1.4.4 Multi‐Step LAM Techniques -- References -- Chapter 2 Multiscale Computational Approaches to LAM -- 2.1 Computational Science -- 2.1.1 Computational Material Science -- 2.2 Multiscale Modeling -- 2.2.1 Nano‐Micro‐Scale Modeling -- 2.2.1.1 Molecular Dynamics and Density Functional Theory -- 2.2.1.2 Monte Carlo Method -- 2.2.2 Meso‐Macro Scale Modeling -- 2.2.2.1 Kinetic Monte Carlo Method -- 2.2.2.2 Cellular Automata -- 2.2.2.3 Phase‐Field Method -- 2.2.2.4 Finite Element Method -- 2.3 Integrated Computational Materials Engineering (ICME) -- References -- Chapter 3 Laser Matter Interaction in LAM -- 3.1 Introduction -- 3.1.1 Physical Phenomena in LAM -- 3.2 Components of Mathematical Models in Metal AM -- 3.3 Feedstock -- 3.3.1 Powder Bed Morphology in LPBF -- 3.3.1.1 Discrete Element Method -- 3.3.1.2 Powder Spreading Mechanism -- 3.3.2 Powder Stream Generation in LDED -- 3.3.2.1 Turbulent Gas Flow and Discrete Phase Model -- 3.3.2.2 Powder Stream Characteristics -- 3.3.3 Laser‐Feedstock Interaction -- 3.4 Thermo‐Fluidic Model in LAM -- 3.4.1 Laser Heat Source -- 3.4.2 Radiative and Convective Cooling -- 3.4.3 Recoil Pressure and Evaporative Cooling -- 3.4.4 Surface Tension -- 3.4.5 Free Surface Tracking Methods -- 3.5 Melt Hydrodynamics in LPBF -- 3.5.1 Thermo‐Fluidic Anatomy of a Single Track -- 3.5.2 Conduction Mode LPBF -- 3.5.3 Keyhole Mode LPBF.
3.5.4 Energy Coupling Mechanism -- 3.6 Melt Hydrodynamics in LDED -- 3.7 Multi‐Layer, Multi‐Track Approach -- 3.8 Computational Cost -- 3.9 Computationally Efficient Approach -- 3.10 Guidelines for Experimental Validation -- References -- Chapter 4 Thermokinetics, Microstructural Evolution, and Material Response -- 4.1 Thermokinetics in LAM -- 4.2 Solidification -- 4.2.1 Nucleation -- 4.2.1.1 Heterogeneous Nucleation Assisted by Inoculants -- 4.2.1.2 Homogeneous Nucleation -- 4.2.1.3 Nucleation Influenced by Acoustic Cavitation -- 4.2.2 Solidification Variables -- 4.2.2.1 Thermal Gradient -- 4.2.2.2 Solidification Rate -- 4.2.3 Growth and Orientation -- 4.2.4 Solidification Modes -- 4.2.5 Spatial Variation of Thermokinetic Parameters -- 4.2.5.1 Dependence on the Curvature of the Trailing Boundary -- 4.2.5.2 Solidification Rate and Thermal Gradient -- 4.2.5.3 Morphology Factor and Cooling Rate Variation -- 4.2.5.4 Columnar‐to‐Equiaxed Transition -- 4.3 Thermal Cycles in LAM Processes -- 4.3.1 Thermal Cycles in LPBF -- 4.3.1.1 Thermal Cycles During Layer Fabrication -- 4.3.1.2 Thermal Cycles During Fabrication of Multiple Layers -- 4.3.2 Thermal Cycles in LDED -- 4.3.2.1 Thermal Cycles During the Deposition of a Layer -- 4.3.2.2 Thermal Cycles During Fabrication of Multiple Layers -- 4.4 Phase Transformations in LAM -- 4.4.1 Thermal Cycle‐Driven Phase Evolution -- 4.4.2 Process‐Driven Phase Transformations -- 4.4.2.1 Isothermal Effect -- 4.4.2.2 Process Parameters -- 4.5 Effect of Process Parameters -- 4.5.1 Laser Beam Attributes -- 4.5.1.1 Laser Beam Diameter -- 4.5.1.2 Laser Power -- 4.5.1.3 Laser Speed -- 4.5.2 Laser Process Attributes -- 4.5.2.1 Scanning Strategy -- 4.5.2.2 Preheating the Substrate -- 4.5.2.3 Build Orientation -- 4.5.2.4 Interlayer Duration -- 4.5.2.5 Feed Rate -- 4.6 Effect of Melting Modes -- 4.7 Laser Operation Modes.
4.8 Material Response -- 4.8.1 Mechanical Response -- 4.8.1.1 Elastic Modulus -- 4.8.1.2 Fatigue -- 4.8.1.3 Creep -- 4.8.1.4 Wear -- 4.8.2 Electrochemical Response -- References -- Chapter 5 Residual Stress in LAM -- 5.1 Introduction -- 5.2 Thermo‐Mechanical Model: Mathematical Framework -- 5.2.1 Elasto‐Plastic Mechanical Model -- 5.2.2 Stress‐Strain Behavior -- 5.2.2.1 Elastic Region -- 5.2.2.2 Yield Stress -- 5.2.2.3 Plastic Region -- 5.2.2.4 Bauschinger Effect and Kinematic Hardening -- 5.2.3 Basic Elements of Elastic‐Plastic Theory -- 5.2.3.1 Stress -- 5.2.3.2 Strain -- 5.2.3.3 Equation of Motion -- 5.2.3.4 Criterion for Initial Yielding -- 5.2.3.5 Flow Rule -- 5.2.3.6 Isotropic Strain Hardening -- 5.2.3.7 Viscoplasticity and Thermal Softening -- 5.2.3.8 Kinematic Hardening -- 5.2.3.9 Consistency Condition -- 5.2.3.10 Elastic‐Plastic Stress‐Strain Relation -- 5.3 Thermal Elastic‐Plastic Formulation -- 5.3.1 Macro‐Scale Approaches -- 5.4 Evolution of Residual Stress in LAM -- 5.4.1 Thermo‐Mechanical Anatomy of a Single Track -- 5.4.2 Thermo‐Mechanical Anatomy of a Single Layer -- 5.4.3 Stress Evolution at Component Scale -- 5.4.4 Experimental Validation of Residual Stress -- 5.4.5 Integrated Experimental and Numerical Approach for the Mitigation of Residual Stress -- 5.4.5.1 Role of the Scanning Strategy -- 5.4.5.2 Role of Preheating -- 5.4.5.3 Real‐Time Control and Miscellaneous Approaches -- References -- Chapter 6 Surface Roughness in LAM -- 6.1 Introduction -- 6.2 Surface Roughness Characteristics in LAM -- 6.3 Surface Defects in LAM -- 6.4 Post‐LAM Surface Finishing -- References -- Index -- EULA.
Record Nr. UNINA-9910590091803321
Dahotre Narendra B  
Newark : , : John Wiley & Sons, Incorporated, , 2022
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Machining of Bone and Hard Tissues / / by Narendra B. Dahotre, Sameehan S. Joshi
Machining of Bone and Hard Tissues / / by Narendra B. Dahotre, Sameehan S. Joshi
Autore Dahotre Narendra B
Edizione [1st ed. 2016.]
Pubbl/distr/stampa Cham : , : Springer International Publishing : , : Imprint : Springer, , 2016
Descrizione fisica 1 online resource (VIII, 181 p. 164 illus., 62 illus. in color.)
Disciplina 620.11
Soggetto topico Biomaterials
Orthopedics
Manufactures
Robotics
Automation
Biomedical engineering
Minimally invasive surgery
Surgical Orthopedics
Manufacturing, Machines, Tools, Processes
Robotics and Automation
Biomedical Engineering/Biotechnology
Minimally Invasive Surgery
ISBN 3-319-39158-5
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Introduction -- Fundamental Operations of Bone Machining -- Non-conventional and Hybrid Methods of Bone Machining -- Attributes of Bone Machining -- Computational Modeling in Bone Machining -- Potential Automation of bone Machining.
Record Nr. UNINA-9910254049903321
Dahotre Narendra B  
Cham : , : Springer International Publishing : , : Imprint : Springer, , 2016
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui