Modeling and convexity / / Eduardo Souza de Cursi, Rubens Sampaio |
Autore | Cursi Eduardo Souza de |
Pubbl/distr/stampa | London, England ; ; Hoboken, New Jersey : , : ISTE : , : Wiley, , 2010 |
Descrizione fisica | 1 online resource (517 p.) |
Disciplina |
620.001/51
620.00151 620.00151976 |
Collana | ISTE |
Soggetto topico |
Engineering mathematics
Machinery - Mathematical models Convex sets |
ISBN |
1-118-62243-X
1-118-62239-1 1-118-62232-4 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Cover; Title Page; Copyright Page; Table of Contents; Introduction; PART 1. MOTIVATION: EXAMPLES AND APPLICATIONS; Chapter 1. Curvilinear Continuous Media; 1.1. One-dimensional curvilinear media; 1.1.1. Ideally flexible string; 1.1.1.1. The essential difficulty; 1.1.1.2. Unilateral contact; 1.1.2. The ""elastica"" problem: buckling of an inextensible beam; 1.2. Supple membranes; 1.2.1. Curvilinear coordinates and charts; 1.2.2. Metric tensor; 1.2.3. Internal efforts and constitutive law; 1.2.4. Exterior efforts; 1.2.5. Infinitesimal deformations; 1.2.6. Principle of minimum energy
Chapter 2. Unilateral System Dynamics2.1. Dynamics of ideally flexible strings; 2.1.1. Propagation of discontinuities; 2.1.2. Evolution; 2.1.3. Vibrations; 2.1.3.1. Harmonic response; 2.1.3.2. Small oscillations; 2.2. Contact dynamics; 2.2.1. Evolution of a material point; 2.2.2. Evolution of deformable and non-deformable solids; 2.2.3. Granular modeling of the movement of a crowd; Chapter 3. A Simplified Model of Fusion/Solidification; 3.1. A simplified model of phase transition; Chapter 4. Minimization of a Non-Convex Function; 4.1. Probabilities, convexity and global optimization Chapter 5. Simple Models of Plasticity5.1. Ideal elastoplasticity; PART 2. THEORETICAL ELEMENTS; Chapter 6. Elements of Set Theory; 6.1. Elementary notions and operations on sets; 6.2. The axiom of choice; 6.3. Zorn's lemma; Chapter 7. Real Hilbert Spaces; 7.1. Scalar product and norm; 7.2. Bases and dimensions; 7.3. Open sets and closed sets; 7.4. Sequences; 7.4.1. Dense sequences and dense sets; 7.5. Linear functionals; 7.5.1. Sequences and continuity; 7.6. Complete space; 7.6.1. The Cauchy sequence; 7.6.2. Completion of a space; 7.6.3. Baire's theorem: a property of complete spaces 7.7. Orthogonal projection onto a vector subspace7.8. Riesz's representation theory; 7.9. Weak topology; 7.10. Separable spaces: Hilbert bases and series; Chapter 8. Convex Sets; 8.1. Hyperplanes; 8.2. Convex sets; 8.3. Convex hulls; 8.4. Orthogonal projection on a convex set; 8.5. Separation theorems; 8.6. Convex cone; Chapter 9. Functionals on a Hilbert Space; 9.1. Basic notions; 9.2. Convex functionals; 9.3. Semi-continuous functionals; 9.4. Affine functionals; 9.5. Convexification and LSC regularization; 9.6. Conjugate functionals; 9.7. Subdifferentiability; Chapter 10. Optimization 10.1. The optimization problem10.2. Basic notions; 10.2.1. Minimizing sequences; 10.2.2. Indicator function; 10.2.3. Coerciveness; 10.3. Fundamental results; 10.3.1. Approximation; 10.3.1.1. Exterior penalty approximation; 10.3.1.2. Interior penalty approximation; 10.3.1.3. Approximation by regularization; 10.3.1.4. Duality approximation; Chapter 11. Variational Problems; 11.1. Fundamental notions; 11.1.1.Proximal elements; 11.1.2. Operators and monotony; 11.1.2.1. Monotony; 11.1.2.2. Semi-continuous operators and hemi-continuous operators; 11.1.2.3. Maximal monotone operators 11.1.2.4.Brower's fixed point theorem |
Record Nr. | UNINA-9910141636203321 |
Cursi Eduardo Souza de | ||
London, England ; ; Hoboken, New Jersey : , : ISTE : , : Wiley, , 2010 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Modeling and convexity / / Eduardo Souza de Cursi, Rubens Sampaio |
Autore | Cursi Eduardo Souza de |
Pubbl/distr/stampa | London, England ; ; Hoboken, New Jersey : , : ISTE : , : Wiley, , 2010 |
Descrizione fisica | 1 online resource (517 p.) |
Disciplina |
620.001/51
620.00151 620.00151976 |
Collana | ISTE |
Soggetto topico |
Engineering mathematics
Machinery - Mathematical models Convex sets |
ISBN |
1-118-62243-X
1-118-62239-1 1-118-62232-4 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Cover; Title Page; Copyright Page; Table of Contents; Introduction; PART 1. MOTIVATION: EXAMPLES AND APPLICATIONS; Chapter 1. Curvilinear Continuous Media; 1.1. One-dimensional curvilinear media; 1.1.1. Ideally flexible string; 1.1.1.1. The essential difficulty; 1.1.1.2. Unilateral contact; 1.1.2. The ""elastica"" problem: buckling of an inextensible beam; 1.2. Supple membranes; 1.2.1. Curvilinear coordinates and charts; 1.2.2. Metric tensor; 1.2.3. Internal efforts and constitutive law; 1.2.4. Exterior efforts; 1.2.5. Infinitesimal deformations; 1.2.6. Principle of minimum energy
Chapter 2. Unilateral System Dynamics2.1. Dynamics of ideally flexible strings; 2.1.1. Propagation of discontinuities; 2.1.2. Evolution; 2.1.3. Vibrations; 2.1.3.1. Harmonic response; 2.1.3.2. Small oscillations; 2.2. Contact dynamics; 2.2.1. Evolution of a material point; 2.2.2. Evolution of deformable and non-deformable solids; 2.2.3. Granular modeling of the movement of a crowd; Chapter 3. A Simplified Model of Fusion/Solidification; 3.1. A simplified model of phase transition; Chapter 4. Minimization of a Non-Convex Function; 4.1. Probabilities, convexity and global optimization Chapter 5. Simple Models of Plasticity5.1. Ideal elastoplasticity; PART 2. THEORETICAL ELEMENTS; Chapter 6. Elements of Set Theory; 6.1. Elementary notions and operations on sets; 6.2. The axiom of choice; 6.3. Zorn's lemma; Chapter 7. Real Hilbert Spaces; 7.1. Scalar product and norm; 7.2. Bases and dimensions; 7.3. Open sets and closed sets; 7.4. Sequences; 7.4.1. Dense sequences and dense sets; 7.5. Linear functionals; 7.5.1. Sequences and continuity; 7.6. Complete space; 7.6.1. The Cauchy sequence; 7.6.2. Completion of a space; 7.6.3. Baire's theorem: a property of complete spaces 7.7. Orthogonal projection onto a vector subspace7.8. Riesz's representation theory; 7.9. Weak topology; 7.10. Separable spaces: Hilbert bases and series; Chapter 8. Convex Sets; 8.1. Hyperplanes; 8.2. Convex sets; 8.3. Convex hulls; 8.4. Orthogonal projection on a convex set; 8.5. Separation theorems; 8.6. Convex cone; Chapter 9. Functionals on a Hilbert Space; 9.1. Basic notions; 9.2. Convex functionals; 9.3. Semi-continuous functionals; 9.4. Affine functionals; 9.5. Convexification and LSC regularization; 9.6. Conjugate functionals; 9.7. Subdifferentiability; Chapter 10. Optimization 10.1. The optimization problem10.2. Basic notions; 10.2.1. Minimizing sequences; 10.2.2. Indicator function; 10.2.3. Coerciveness; 10.3. Fundamental results; 10.3.1. Approximation; 10.3.1.1. Exterior penalty approximation; 10.3.1.2. Interior penalty approximation; 10.3.1.3. Approximation by regularization; 10.3.1.4. Duality approximation; Chapter 11. Variational Problems; 11.1. Fundamental notions; 11.1.1.Proximal elements; 11.1.2. Operators and monotony; 11.1.2.1. Monotony; 11.1.2.2. Semi-continuous operators and hemi-continuous operators; 11.1.2.3. Maximal monotone operators 11.1.2.4.Brower's fixed point theorem |
Record Nr. | UNINA-9910829925803321 |
Cursi Eduardo Souza de | ||
London, England ; ; Hoboken, New Jersey : , : ISTE : , : Wiley, , 2010 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Uncertainty quantification and stochastic modelling with EXCEL / / Eduardo Souza de Cursi |
Autore | Cursi Eduardo Souza de |
Pubbl/distr/stampa | Cham, Switzerland : , : Springer, , [2022] |
Descrizione fisica | 1 online resource (536 pages) |
Disciplina | 519.2 |
Collana | Springer Texts in Business and Economics |
Soggetto topico |
Uncertainty - Mathematical models
Mathematics - Philosophy |
ISBN |
9783030777579
9783030777562 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Record Nr. | UNINA-9910522558003321 |
Cursi Eduardo Souza de | ||
Cham, Switzerland : , : Springer, , [2022] | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Uncertainty quantification using R / / Eduardo Souza de Cursi |
Autore | Cursi Eduardo Souza de |
Edizione | [1st ed. 2023.] |
Pubbl/distr/stampa | Cham, Switzerland : , : Springer, , [2023] |
Descrizione fisica | 1 online resource (768 pages) |
Disciplina | 519.502855133 |
Collana | International Series in Operations Research & Management Science |
Soggetto topico |
R (Computer program language)
Uncertainty - Mathematical models |
ISBN |
9783031177859
9783031177842 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | 1. Introduction -- 2. Some tips to use R and RStudio -- 3. Probabilities and Random Variables -- 4. Representation of random variables -- 5. Stochastic processes -- 6. Uncertain Algebraic Equations -- 7. Random Differential Equations -- 8. UQ in Game Theory -- 9. Optimization under uncertainty -- 10. Reliability. |
Record Nr. | UNINA-9910674355303321 |
Cursi Eduardo Souza de | ||
Cham, Switzerland : , : Springer, , [2023] | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Variational methods for engineers with Matlab / / Eduardo Souza de Cursi |
Autore | Cursi Eduardo Souza de |
Edizione | [1st edition] |
Pubbl/distr/stampa | London, England ; ; Hoboken, New Jersey : , : iSTE : , : Wiley, , 2015 |
Descrizione fisica | 1 online resource (335 p.) |
Disciplina | 515.64 |
Collana | Numerical Methods in Engineering Series |
Soggetto topico | Variational inequalities (Mathematics) |
Soggetto genere / forma | Electronic books. |
ISBN |
1-119-23015-2
1-119-23012-8 1-119-23014-4 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
""Table of Contents""; ""Title""; ""Copyright""; ""Introduction""; ""1: Integrals""; ""1.1 Riemann integrals""; ""1.2 Lebesgue integrals""; ""1.3 Matlab® classes for a Riemann integral by trapezoidal integration""; ""1.4 Matlab® classes for Lebesgue's integral""; ""1.5 Matlab® classes for evaluation of the integrals when/is defined by a subprogram""; ""1.6 Matlab® classes for partitions including the evaluation of the integrals""; ""2: Variational Methods for Algebraic Equations""; ""2.1 Linear systems""; ""2.2 Algebraic equations depending upon a parameter""; ""2.3 Exercises""
""4.5 Reducing multiple indexes to a single one""""4.6 Existence and uniqueness of the solution of a variational equation""; ""4.7 Linear variational equations in separable spaces""; ""4.8 Parametric variational equations""; ""4.9 A Matlab® class for variational equations""; ""4.10 Exercises""; ""5: Variational Methods for Differential Equations""; ""5.1 A simple situation: the oscillator with one degree of freedom""; ""5.2 Connection between differential equations and variational equations""; ""5.3 Variational approximation of differential equations"" ""5.4 Evolution partial differential equations""""5.5 Exercises""; ""6: Dirac's Delta""; ""6.1 A simple example""; ""6.2 Functional definition of Dirac's delta""; ""6.3 Approximations of Dirac's delta""; ""6.4 Smoothed particle approximations of Dirac's delta""; ""6.5 Derivation using Dirac's delta approximations""; ""6.6 A Matlab® class for smoothed particle approximations""; ""6.7 Green's functions""; ""7: Functionals and Calculus of Variations""; ""7.1 Differentials""; ""7.2 Gâteaux derivatives of functionals""; ""7.3 Convex functionals"" ""7.4 Standard methods for the determination of Gâteaux derivatives""""7.5 Numerical evaluation and use of Gâteaux differentials""; ""7.6 Minimum of the energy""; ""7.7 Lagrange's multipliers""; ""7.8 Primal and dual problems""; ""7.9 Matlab® determination of minimum energy solutions""; ""7.10 First-order control problems""; ""7.11 Second-order control problems""; ""7.12 A variational approach for multiobjective optimization""; ""7.13 Matlab® implementation of the variational approach for biobjective optimization""; ""7.14 Exercises""; ""Bibliography""; ""Index"" |
Record Nr. | UNISA-996267133603316 |
Cursi Eduardo Souza de | ||
London, England ; ; Hoboken, New Jersey : , : iSTE : , : Wiley, , 2015 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. di Salerno | ||
|
Variational methods for engineers with Matlab / / Eduardo Souza de Cursi |
Autore | Cursi Eduardo Souza de |
Edizione | [1st edition] |
Pubbl/distr/stampa | London, England ; ; Hoboken, New Jersey : , : iSTE : , : Wiley, , 2015 |
Descrizione fisica | 1 online resource (335 p.) |
Disciplina | 515.64 |
Collana | Numerical Methods in Engineering Series |
Soggetto topico | Variational inequalities (Mathematics) |
Soggetto genere / forma | Electronic books. |
ISBN |
1-119-23015-2
1-119-23012-8 1-119-23014-4 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
""Table of Contents""; ""Title""; ""Copyright""; ""Introduction""; ""1: Integrals""; ""1.1 Riemann integrals""; ""1.2 Lebesgue integrals""; ""1.3 Matlab® classes for a Riemann integral by trapezoidal integration""; ""1.4 Matlab® classes for Lebesgue's integral""; ""1.5 Matlab® classes for evaluation of the integrals when/is defined by a subprogram""; ""1.6 Matlab® classes for partitions including the evaluation of the integrals""; ""2: Variational Methods for Algebraic Equations""; ""2.1 Linear systems""; ""2.2 Algebraic equations depending upon a parameter""; ""2.3 Exercises""
""4.5 Reducing multiple indexes to a single one""""4.6 Existence and uniqueness of the solution of a variational equation""; ""4.7 Linear variational equations in separable spaces""; ""4.8 Parametric variational equations""; ""4.9 A Matlab® class for variational equations""; ""4.10 Exercises""; ""5: Variational Methods for Differential Equations""; ""5.1 A simple situation: the oscillator with one degree of freedom""; ""5.2 Connection between differential equations and variational equations""; ""5.3 Variational approximation of differential equations"" ""5.4 Evolution partial differential equations""""5.5 Exercises""; ""6: Dirac's Delta""; ""6.1 A simple example""; ""6.2 Functional definition of Dirac's delta""; ""6.3 Approximations of Dirac's delta""; ""6.4 Smoothed particle approximations of Dirac's delta""; ""6.5 Derivation using Dirac's delta approximations""; ""6.6 A Matlab® class for smoothed particle approximations""; ""6.7 Green's functions""; ""7: Functionals and Calculus of Variations""; ""7.1 Differentials""; ""7.2 Gâteaux derivatives of functionals""; ""7.3 Convex functionals"" ""7.4 Standard methods for the determination of Gâteaux derivatives""""7.5 Numerical evaluation and use of Gâteaux differentials""; ""7.6 Minimum of the energy""; ""7.7 Lagrange's multipliers""; ""7.8 Primal and dual problems""; ""7.9 Matlab® determination of minimum energy solutions""; ""7.10 First-order control problems""; ""7.11 Second-order control problems""; ""7.12 A variational approach for multiobjective optimization""; ""7.13 Matlab® implementation of the variational approach for biobjective optimization""; ""7.14 Exercises""; ""Bibliography""; ""Index"" |
Record Nr. | UNISA-996455654003316 |
Cursi Eduardo Souza de | ||
London, England ; ; Hoboken, New Jersey : , : iSTE : , : Wiley, , 2015 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. di Salerno | ||
|
Variational methods for engineers with Matlab / / Eduardo Souza de Cursi |
Autore | Cursi Eduardo Souza de |
Edizione | [1st edition] |
Pubbl/distr/stampa | London, England ; ; Hoboken, New Jersey : , : iSTE : , : Wiley, , 2015 |
Descrizione fisica | 1 online resource (335 p.) |
Disciplina | 515.64 |
Collana | Numerical Methods in Engineering Series |
Soggetto topico | Variational inequalities (Mathematics) |
ISBN |
1-119-23015-2
1-119-23012-8 1-119-23014-4 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
""Table of Contents""; ""Title""; ""Copyright""; ""Introduction""; ""1: Integrals""; ""1.1 Riemann integrals""; ""1.2 Lebesgue integrals""; ""1.3 Matlab® classes for a Riemann integral by trapezoidal integration""; ""1.4 Matlab® classes for Lebesgue's integral""; ""1.5 Matlab® classes for evaluation of the integrals when/is defined by a subprogram""; ""1.6 Matlab® classes for partitions including the evaluation of the integrals""; ""2: Variational Methods for Algebraic Equations""; ""2.1 Linear systems""; ""2.2 Algebraic equations depending upon a parameter""; ""2.3 Exercises""
""4.5 Reducing multiple indexes to a single one""""4.6 Existence and uniqueness of the solution of a variational equation""; ""4.7 Linear variational equations in separable spaces""; ""4.8 Parametric variational equations""; ""4.9 A Matlab® class for variational equations""; ""4.10 Exercises""; ""5: Variational Methods for Differential Equations""; ""5.1 A simple situation: the oscillator with one degree of freedom""; ""5.2 Connection between differential equations and variational equations""; ""5.3 Variational approximation of differential equations"" ""5.4 Evolution partial differential equations""""5.5 Exercises""; ""6: Dirac's Delta""; ""6.1 A simple example""; ""6.2 Functional definition of Dirac's delta""; ""6.3 Approximations of Dirac's delta""; ""6.4 Smoothed particle approximations of Dirac's delta""; ""6.5 Derivation using Dirac's delta approximations""; ""6.6 A Matlab® class for smoothed particle approximations""; ""6.7 Green's functions""; ""7: Functionals and Calculus of Variations""; ""7.1 Differentials""; ""7.2 Gâteaux derivatives of functionals""; ""7.3 Convex functionals"" ""7.4 Standard methods for the determination of Gâteaux derivatives""""7.5 Numerical evaluation and use of Gâteaux differentials""; ""7.6 Minimum of the energy""; ""7.7 Lagrange's multipliers""; ""7.8 Primal and dual problems""; ""7.9 Matlab® determination of minimum energy solutions""; ""7.10 First-order control problems""; ""7.11 Second-order control problems""; ""7.12 A variational approach for multiobjective optimization""; ""7.13 Matlab® implementation of the variational approach for biobjective optimization""; ""7.14 Exercises""; ""Bibliography""; ""Index"" |
Record Nr. | UNINA-9910131500303321 |
Cursi Eduardo Souza de | ||
London, England ; ; Hoboken, New Jersey : , : iSTE : , : Wiley, , 2015 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Variational methods for engineers with Matlab / / Eduardo Souza de Cursi |
Autore | Cursi Eduardo Souza de |
Edizione | [1st edition] |
Pubbl/distr/stampa | London, England ; ; Hoboken, New Jersey : , : iSTE : , : Wiley, , 2015 |
Descrizione fisica | 1 online resource (335 p.) |
Disciplina | 515.64 |
Collana | Numerical Methods in Engineering Series |
Soggetto topico | Variational inequalities (Mathematics) |
ISBN |
1-119-23015-2
1-119-23012-8 1-119-23014-4 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
""Table of Contents""; ""Title""; ""Copyright""; ""Introduction""; ""1: Integrals""; ""1.1 Riemann integrals""; ""1.2 Lebesgue integrals""; ""1.3 Matlab® classes for a Riemann integral by trapezoidal integration""; ""1.4 Matlab® classes for Lebesgue's integral""; ""1.5 Matlab® classes for evaluation of the integrals when/is defined by a subprogram""; ""1.6 Matlab® classes for partitions including the evaluation of the integrals""; ""2: Variational Methods for Algebraic Equations""; ""2.1 Linear systems""; ""2.2 Algebraic equations depending upon a parameter""; ""2.3 Exercises""
""4.5 Reducing multiple indexes to a single one""""4.6 Existence and uniqueness of the solution of a variational equation""; ""4.7 Linear variational equations in separable spaces""; ""4.8 Parametric variational equations""; ""4.9 A Matlab® class for variational equations""; ""4.10 Exercises""; ""5: Variational Methods for Differential Equations""; ""5.1 A simple situation: the oscillator with one degree of freedom""; ""5.2 Connection between differential equations and variational equations""; ""5.3 Variational approximation of differential equations"" ""5.4 Evolution partial differential equations""""5.5 Exercises""; ""6: Dirac's Delta""; ""6.1 A simple example""; ""6.2 Functional definition of Dirac's delta""; ""6.3 Approximations of Dirac's delta""; ""6.4 Smoothed particle approximations of Dirac's delta""; ""6.5 Derivation using Dirac's delta approximations""; ""6.6 A Matlab® class for smoothed particle approximations""; ""6.7 Green's functions""; ""7: Functionals and Calculus of Variations""; ""7.1 Differentials""; ""7.2 Gâteaux derivatives of functionals""; ""7.3 Convex functionals"" ""7.4 Standard methods for the determination of Gâteaux derivatives""""7.5 Numerical evaluation and use of Gâteaux differentials""; ""7.6 Minimum of the energy""; ""7.7 Lagrange's multipliers""; ""7.8 Primal and dual problems""; ""7.9 Matlab® determination of minimum energy solutions""; ""7.10 First-order control problems""; ""7.11 Second-order control problems""; ""7.12 A variational approach for multiobjective optimization""; ""7.13 Matlab® implementation of the variational approach for biobjective optimization""; ""7.14 Exercises""; ""Bibliography""; ""Index"" |
Record Nr. | UNINA-9910817883903321 |
Cursi Eduardo Souza de | ||
London, England ; ; Hoboken, New Jersey : , : iSTE : , : Wiley, , 2015 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|